ALGORITMA OPTIMASI UNTUK PENYELESAIAN TRAVELLING SALESMAN PROBLEM
DOI:
https://doi.org/10.26623/transformatika.v11i1.76Keywords:
quick count, sampling error, metode samplingAbstract
Travelling Salesman Problem (TSP) masih menjadi topik menarik untuk dibahas. TSP termasuk bagian dari permasalahan optimasi di dunia nyata. Pada TSP ini terdapat n buah kota yang harus dilalui oleh seorang salesman, kemudian kembali ke kota dimana pertama kali dia berangkat. Dalam perjalanannya tersebut, seorang salesman harus memilih rute yang terpendek. Ada banyak algoritma untuk memecahkan masalah TSP. Dan diantara sekian banyak algoritma, pada penelitian ini akan dibahas mengenai bagaimana implementasi algoritma greedy, Artificial Bee Colony (ABC), Cheapest Insertion Heuristics (CIH), dan algoritma genetika untuk menyelesaikan kasus TSP. Analisis yang dilakukan adalah perbandingan metode, implementasinya terhadap kasus TSP, serta kelebihan dan kekurangan masing-masing algoritmaDownloads
Published
2013-07-19
Issue
Section
Artikel
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.