YOLO Algorithm for Detecting People in Social Distancing System
DOI:
https://doi.org/10.26623/transformatika.v19i1.3582Keywords:
Social distancing, YOLOv3, Euclidean DistanceAbstract
Social distancing is an effort to prevent the spread of the coronavirus. Several systems for monitoring social distancing have been developed. People detection is an essential step in implementing a social distancing system. Failure to detect people causes the social distancing system to be inaccurate. Two people who communicate cannot occur violations of social distancing because one person is not detected. Therefore, we propose a precise person detection method for the social distancing system. The proposed social distancing system uses the YOLOv3 method for people detection and Euclidean Distance for measuring the distance of social distancing. YOLOv3 can detect people's objects precisely, even people who are caught small by the camera. Experiments on two outdoor video datasets result in an F1 value of more than 0.8. This proposed system can serve as a reference for future social distancing research.Downloads
Additional Files
Published
2021-07-31
Issue
Section
Artikel
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.