MotoGP Mandalika 2022 Sentiment Classification Using Machine Learning

Doughlas Pardede, B. Herawan Hayadi

Abstract


MotoGP is a world-class motorcycle racing event, which will be held in the 19th series in 2022 at the Pertamina Mandalika Circuit. This study tries to analyze public sentiment collected from the results of tweeter social media tweets, in the form of sentiment and emotion values. With the features of sentiment and emotion values extracted from the contents of this tweet, k-means clustering is used to generate sentiment clusters as targets for classification using the MLP algorithm. From the results of the evaluation using 10-fold cross validation, the accuracy value is 97%, the precision value is 94.64% and the recall value is 100%. The classification results also show that the public response to the 2022 MotoGP event at the Mandalika circuit is quite balanced, where 53% have a positive response, while the rest have a negative response

Keywords


Sentiment analysis; mandalika; motogp; k-means; multilayer perceptron

Full Text:

PDF

References


Pinch P, Reimer S. MotoGP and heterogeneous design. In: Spinney J, Reimer S, Pinch P, editors. Mobilising Des., Abingdon, Oxon, ; New York, NY : Routledge, 2017. | Series: Routledge Studies in Human Geography ; 69: Routledge; 2017, p. 117 29. https://doi.org/10.4324/9781315560113-10.

Purnamasari Y. Competition Frame on MotoGP Articles: A Cognitive Linguistic Approach. J Bhs Ingg Terap 2018;4:20 33. https://doi.org/10.35313/jbit.v4i1.1355.

Mandasari S, Hayadi BH, Gunawan R. Analisis Sentimen Pengguna Transportasi Online Terhadap Layanan Grab Indonesia Menggunakan Multinomial Naive Bayes Classifier. J Teknol Sist Inf Dan Sist Komput TGD 2022;5:118 26.

Fitri E. Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. J Transform 2020;18:71. https://doi.org/10.26623/transformatika.v18i1.2317.

Santoso VI, Virginia G, Lukito Y. Penerapan Sentiment Analysis Pada Hasil Evaluasi Dosen Dengan Metode Support Vector Machine. J Transform 2017;14:72. https://doi.org/10.26623/transformatika.v14i2.439.

Putra RS, Agustin W, Anam MK, Yaakub S. The Application of Na ve Bayes Classifier Based Feature Selection on Analysis of Online Learning Sentiment in Online Media. J Transform 2022;20:44 56.

Furqan M, Mayang Sari S, Ilmu Komputer Fakultas Sains dan Teknologi P. Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia. TechnoCOM 2022;21:52 61. https://doi.org/https://doi.org/10.33633/tc.v21i1.5446.

Selvida D, Zarlis M, Situmorang Z. Analysis of the effect early cluster centre points on the combination of k-means algorithms and sum of squared error on k centroid. IOP Conf Ser Mater Sci Eng 2020;725. https://doi.org/10.1088/1757-899X/725/1/012089.

Hartono, Sitompul OS, Tulus, Nababan EB. Optimization Model of K-Means Clustering Using Artificial Neural Networks to Handle Class Imbalance Problem. IOP Conf Ser Mater Sci Eng 2018;288. https://doi.org/10.1088/1757-899X/288/1/012075.

Harahap M, Lubis Y, Situmorang Z. Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering. Data Sci Indones 2022;1:76 88. https://doi.org/10.47709/dsi.v1i2.1348.

Prasetio A, Rosnelly R. Identification of Malaria Parasite Patterns With Gray Level Co-Occurance. J RESTI (Rekayasa Sist Dan Teknol Informasi) 2022;5:359 69.

Agustina N, Prihandoko P. Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan. J RESTI (Rekayasa Sist Dan Teknol Informasi) 2018;2:621 6. https://doi.org/10.29207/resti.v2i3.492.

Pardede D, Hayadi BH, Iskandar. Kajian Literatur Multi Layer Perceptron Seberapa Baik Performa Algoritma Ini. J ICT Apl Syst 2022;1:23 35. https://doi.org/10.56313/jictas.v1i1.127.

Hayadi BH, Sudipa IGI, Windarto AP. Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan menggunakan Artificial Neural Network Back-Propagation. MATRIK J Manajemen, Tek Inform Dan Rekayasa Komput 2021;21:11 20. https://doi.org/10.30812/matrik.v21i1.1273.

Wanto A, Herawan Hayadi B, Subekti P, Sudrajat D, Wikansari R, Bhawika GW, et al. Forecasting the Export and Import Volume of Crude Oil, Oil Products and Gas Using ANN. J Phys Conf Ser 2019;1255. https://doi.org/10.1088/1742-6596/1255/1/012016.

Yanto B, Fimawahib L, Supriyanto A, Hayadi BH, Pratama RR. Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network. INOVTEK Polbeng - Seri Inform 2021;6:259. https://doi.org/10.35314/isi.v6i2.2104.

Kusuma J, Hayadi BH, Rosnelly R. Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara. MIND (Multimedia Artif Intell Netw Database) J 2022;7:51 60.

Haryalesmana D, Wieriks M. ID-Stopwords. 2019.

da Silva IRR, Lima ACES, Pasti R, de Castro LN. Classifying emotions in Twitter messages using a deep neural network. Adv Intell Syst Comput 2019;801:283 90. https://doi.org/10.1007/978-3-319-99608-0_32.

Işık G, Ekici S, Šahin G. A neural network model for UAV propulsion system. Aircr Eng Aerosp Technol 2020;92:1177 84. https://doi.org/10.1108/AEAT-04-2020-0064.

Irfan D, Rosnelly R, Wahyuni M, Samudra JT, Rangga A. PERBANDINGAN OPTIMASI SGD, ADADELTA, DAN ADAM DALAM KLASIFIKASI HYDRANGEA MENGGUNAKAN CNN. J Sci Soc Res 2022;4307:244 53.

Samudra JT, Hayadi BH, Ramadhan PS. Komparasi 3 Metode Algoritma Klasifikasi Data Mining Pada Prediksi Kenaikan Jabatan. J Teknol Sist Inf Dan Sist Komput TGD 2022;5:127 33.




DOI: http://dx.doi.org/10.26623/transformatika.v20i2.5364

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.