Credit Risk Modeling Based on Geographical Location: A Case Study of Savings and Loan Cooperatives

Edi Widodo, Widodo, Ahmad Rifai, Pratama Angga Buana

Abstract


The aim of this study is to examine how geographical location affects the credit risk faced by savings and loan cooperatives. Using a quantitative approach, this research will develop a credit risk model that considers geographical variables,
measured by the Human Development Index (HDI). The initial stage of the research involves classifying the credit dataset according to the categories
determined by Bank Indonesia. The data cleansing process resulted in attributes such as credit ceiling, HDI, and credit category. Analysis was conducted using Chi-Square, and Logistic Regression methods. The Chi-Square analysis results showed  
statistically significant relationship between credit ceiling, HDI, and credit category (p-value < 0.05). The Logistic Regression models demonstrated high accuracy in classifying the data, with Logistic Regression achieving 89.71%. In conclusion, credit ceiling and HDI have a significant influence on credit category, with the Logistic Regression model data classification. This study provides valuable
insights into how credit ceiling and HDI influence credit categories, which can be used to make better decisions related to public policy, development
planning, and social interventions


Keywords


Credit Risk; Logistic Regression; Machine Learning, Human Development Index

Full Text:

PDF

References


A. Sasmito Aribowo and N. H. Cahyana, “Feasibility study for banking loan using association rule mining classifier,” International Journal of Advances in Intelligent Informatics, vol. 1, no. 1, pp. 41–47, 2015, doi: 10.12928/ijain.v1i1.p41-47.

J. Maknun, “Evaluasi terhadap Sistem Pengendalian Intern pada Proses Pemberian Kredit Mikro Koperasi Simpan Pinjam (KSP),” Journal of Economic, Bussines and Accounting (COSTING), vol. 2, no. 2, pp. 272–280, May 2019, doi: 10.31539/costing.v2i2.548.

W. Djuarni and R. Ratnasari, “Implementasi Prinsip 5C Dalam Menentukan Kelayakan Pemberian Kredit Pada Nasabah,” 2022. [Online]. Available: https://jurnal.unsur.ac.id/ar-rihlah/index

L. Sariani, “Analisis Urgensi Prinsip 5C (Character, Capacity, Capital, Collateral, Condition) Dalam Meminimalisir Risiko Pembiayaan (Studi pada BMT As’adiyah Sengkang),” IBF JOURNAL: Perbankan Syariah & Keuangan, vol. 1, no. 1, 2021.

E. T. Manurung, U. Katolik, P. Elvy, and M. Manurung, “A New Approach of Bank Credit Assessment For SMES,” 2019.

A. Praba, R. Pinem, P. T. Pungkasanti, and E. Widodo, “Sistem Informasi Catatan Transaksi Keuangan Anggota Koperasi Simpan Pinjam Menggunakan Metode Fast,” Jurnal SIMETRIS, vol. 8, 2017.

M. Lasena and S. Ahmad, “Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Nasabah Dengan Metode Electre,” Bulletin of Information Technology (BIT), vol. 4, no. 2, pp. 232–238, 2023, doi: 10.47065/bit.v3i1.

Otoritas Jasa Keuangan RI, “Statistik Perbankan Indonesia - Desember 2023,” OJK, vol. 22, no. 1, 2023.

G. Rahmasari, M. F. Cahyandito, and A. Tato, “Evaluation of Mckinsey 7s Framework Model Approach To Credit Distribution With 5C And 7P Principles at Commercial Banking,” Innovative: Journal Of Social Science Research, 2024, doi: https://doi.org/10.31004/innovative.v4i1.8275.

N. Ramadhani, R. N. Pangestu, and K. Penulis, “Faktor-Faktor Yang Mempengaruhi Budaya: Ras, Perkembangan Teknologi Dan Lingkungan Geografis (Literature Review Perilaku Konsumen),” Jurnal Ilmu Manajemen Terapan, vol. 3, no. 5, 2022, doi: 10.31933/jimt.v3i5.

K. I. Nikolopoulos and A. I. Tsalas, “Non-performing Loans: A Review of the Literature and the International Experience,” in Non-Performing Loans and Resolving Private Sector Insolvency, Springer International Publishing, 2017, pp. 47–68. doi: 10.1007/978-3-319-50313-4_3.

S. Buya, P. Tongkumchum, and B. E. Owusu, “Modelling of land-use change in Thailand using binary logistic regression and multinomial logistic regression,” Arabian Journal of Geosciences, vol. 13, no. 12, Jun. 2020, doi: 10.1007/s12517-020-05451-2.

A. G. Bluman, Elementary Statistics: A Step-by-Step Approach, 11th ed. Mc Graw Hill, 2023.




DOI: http://dx.doi.org/10.26623/transformatika.v22i1.9710

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.