FEATURE RECOGNITION BERBASIS CORNER DETECTION DENGAN METODE FAST, SURF DAN FLANN TREE UNTUK IDENTIFIKASI LOGO PADA AUGMENTED REALITY MOBILE SYSTEM
DOI:
https://doi.org/10.26623/transformatika.v11i2.96Keywords:
Feature Recognition, Logo IdentificationAbstract
Logo is a graphical symbol that is the identity of an organization, institution, or company. Logo is generally used to introduce to the public the existence of an organization, institution, or company. Through the existence of an agency logo can be seen by the public. Feature recognition is one of the processes that exist within an augmented reality system. One of uses augmented reality is able to recognize the identity of the logo through a camera.The first step to make a process of feature recognition is through the corner detection. Incorporation of several method such as FAST, SURF, and FLANN TREE for the feature detection process based corner detection feature matching up process, will have the better ability to detect the presence of a logo. Additionally when running the feature extraction process there are several issues that arise as scale invariant feature and rotation invariant feature. In this study the research object in the form of logo to the priority to make the process of feature recognition. FAST, SURF, and FLANN TREE method will detection logo with scale invariant feature and rotation invariant feature conditions. Obtained from this study will demonstration the accuracy from FAST, SURF, and FLANN TREE methods to solve the scale invariant and rotation invariant feature problems.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.