Random State Parameter Undersampling untuk Penanganan Data dengan Kelas Tidak Seimbang pada Algoritme Random Forest

Galet Guntoro Setiaji, Joko Suntoro, Ahmad Rifa'i

Abstract


Algoritme Random Forest (RF) sangat populer digunakan pada metode klasifikasi karena waktu learning yang cepat, mampu melakukan pembobotan pada variabel, dan kinerja yang sangat baik pada dataset berukuruan besar, namun algoritme RF mempunyai performa yang buruk saat menangani data dengan kelas tidak seimbang. Data dengan kelas tidak seimbang adalah jumlah data pada kelas tertentu lebih banyak dibandingkan dengan jumlah data pada kelas lainnya. Undersampling (US-RF) adalah salah satu metode yang digunakan untuk penanganan data dengan kelas tidak seimbang, namun metode undersampling akan memilih dan mereduksi data secara acak pada kelas mayoritas sehingga berakibat hilangnya data yang berpotensi berguna. Untuk menghindari hilangnya data yang berpotensi berguna tersebut karena dipilih secara acak, maka akan diterapkan penetapan nilai random state pada metode undersampling. Metode yang diusulkan diberi nama random state parameter undersampling Random Forest (RSUS-RF). Dalam penelitian ini akan dibandingkan antara metode RF, US-RF dan RSUS-RF. Hasil penelitian menunjukkan nilai rata-rata akurasi metode RSUS-RF lebih tinggi dibandingkan dengan metode RF dan US-RF dengan nilai rata-rata akurasi metode RSUS-RF sebesar 0.8259, sedangkan nilai rata-rata akurasi metode RF dan metode US-RF sebesar 0.8035 dan 0.7945. Serta terdapat perbedaan secara signifikan diantara ketiga metode tersebut ketika diuji menggunakan Friedman Test dengan nilai p-value adalah 0.005. 


Keywords


Classification; Class imbalanced; Random Forest; Undersampling; Random State

Full Text:

PDF


DOI: http://dx.doi.org/10.26623/transformatika.v21i2.8901

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.