GA-SVM Wrapper Feature Selection untuk Penanganan Data Berdimensi Tinggi
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
J. Wan, H. Chen, Z. Yuan, T. Li, X. Yang, and B. Bin Sang, “A novel hybrid feature selection method considering feature interaction in neighborhood rough set[Formula presented],” Knowl Based Syst, vol. 227, Sep. 2021, doi: 10.1016/j.knosys.2021.107167.
Y. Guo, N. Wang, Z. Y. Xu, and K. Wu, “The internet of things-based decision support system for information processing in intelligent manufacturing using data mining technology,” Mech Syst Signal Process, vol. 142, Aug. 2020, doi: 10.1016/j.ymssp.2020.106630.
I. F. Kilincer, T. Tuncer, F. Ertam, and A. Sengur, “SPA-IDS: An intelligent intrusion detection system based on vertical mode decomposition and iterative feature selection in computer networks,” Microprocess Microsyst, vol. 96, p. 104752, Feb. 2023, doi: 10.1016/j.micpro.2022.104752.
A. Cherif, A. Badhib, H. Ammar, S. Alshehri, M. Kalkatawi, and A. Imine, “Credit card fraud detection in the era of disruptive technologies: A systematic review,” Journal of King Saud University - Computer and Information Sciences, vol. 35, no. 1. King Saud bin Abdulaziz University, pp. 145–174, Jan. 01, 2023. doi: 10.1016/j.jksuci.2022.11.008.
P. S., F. Al-Turjman, and T. Stephan, “An automated breast cancer diagnosis using feature selection and parameter optimization in ANN,” Computers & Electrical Engineering, vol. 90, p. 106958, Mar. 2021, doi: 10.1016/j.compeleceng.2020.106958.
K. Thirumoorthy and J. J. B. J., “A feature selection model for software defect prediction using binary Rao optimization algorithm,” Appl Soft Comput, vol. 131, p. 109737, Dec. 2022, doi: 10.1016/j.asoc.2022.109737.
F. Bodendorf, P. Merkl, and J. Franke, “Intelligent cost estimation by machine learning in supply management: A structured literature review,” Comput Ind Eng, vol. 160, p. 107601, Oct. 2021, doi: 10.1016/j.cie.2021.107601.
P. Qiu and Z. Niu, “TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data,” Knowl Based Syst, vol. 231, p. 107418, Nov. 2021, doi: 10.1016/j.knosys.2021.107418.
M. García-Torres, R. Ruiz, and F. Divina, “Evolutionary feature selection on high dimensional data using a search space reduction approach,” Eng Appl Artif Intell, vol. 117, p. 105556, Jan. 2023, doi: 10.1016/j.engappai.2022.105556.
B. Wang et al., “Selective Feature Bagging of one-class classifiers for novelty detection in high-dimensional data,” Eng Appl Artif Intell, vol. 120, p. 105825, Apr. 2023, doi: 10.1016/j.engappai.2023.105825.
G. Manikandan and S. Abirami, “An efficient feature selection framework based on information theory for high dimensional data,” Appl Soft Comput, vol. 111, p. 107729, Nov. 2021, doi: 10.1016/j.asoc.2021.107729.
S. Solorio-Fernández, J. Fco. Martínez-Trinidad, and J. A. Carrasco-Ochoa, “A Supervised Filter Feature Selection method for mixed data based on Spectral Feature Selection and Information-theory redundancy analysis,” Pattern Recognit Lett, vol. 138, pp. 321–328, Oct. 2020, doi: 10.1016/j.patrec.2020.07.039.
O. Tarkhaneh, T. T. Nguyen, and S. Mazaheri, “A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm,” Inf Sci (N Y), vol. 565, pp. 278–305, Jul. 2021, doi: 10.1016/j.ins.2021.02.061.
A. Got, A. Moussaoui, and D. Zouache, “Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach,” Expert Syst Appl, vol. 183, p. 115312, Nov. 2021, doi: 10.1016/j.eswa.2021.115312.
W. BinSaeedan and S. Alramlawi, “CS-BPSO: Hybrid feature selection based on chi-square and binary PSO algorithm for Arabic email authorship analysis,” Knowl Based Syst, vol. 227, p. 107224, Sep. 2021, doi: 10.1016/j.knosys.2021.107224.
M. R. Alnowami, F. A. Abolaban, and E. Taha, “A wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancer,” J Radiat Res Appl Sci, vol. 15, no. 1, pp. 104–110, Mar. 2022, doi: 10.1016/j.jrras.2022.01.003.
M. S. Abbasi, H. Al-Sahaf, M. Mansoori, and I. Welch, “Behavior-based ransomware classification: A particle swarm optimization wrapper-based approach for feature selection,” Appl Soft Comput, vol. 121, p. 108744, May 2022, doi: 10.1016/j.asoc.2022.108744.
A. M. Vommi and T. K. Battula, “A hybrid filter-wrapper feature selection using Fuzzy KNN based on Bonferroni mean for medical datasets classification: A COVID-19 case study,” Expert Syst Appl, vol. 218, p. 119612, May 2023, doi: 10.1016/j.eswa.2023.119612.
S. Jain and A. Saha, “Improving performance with hybrid feature selection and ensemble machine learning techniques for code smell detection,” Sci Comput Program, vol. 212, p. 102713, Dec. 2021, doi: 10.1016/j.scico.2021.102713.
R. Espinosa, F. Jiménez, and J. Palma, “Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in regression and classification problems with time series data,” Inf Sci (N Y), vol. 622, pp. 1064–1091, Apr. 2023, doi: 10.1016/j.ins.2022.12.004.
J. Suntoro, A. Ilham, and H. A. D. Rani, “New Method Based Pre-Processing to Tackle Missing and High Dimensional Data of CRISP-DM Approach,” J Phys Conf Ser, vol. 1471, no. 1, p. 012012, Feb. 2020, doi: 10.1088/1742-6596/1471/1/012012.
A. Theissler, M. Thomas, M. Burch, and F. Gerschner, “ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices,” Knowl Based Syst, vol. 247, p. 108651, Jul. 2022, doi: 10.1016/j.knosys.2022.108651.
E. Mortaz, “Imbalance accuracy metric for model selection in multi-class imbalance classification problems,” Knowl Based Syst, vol. 210, p. 106490, Dec. 2020, doi: 10.1016/j.knosys.2020.106490.
S. P. Potharaju, M. Sreedevi, V. K. Ande, and R. K. Tirandasu, “Data mining approach for accelerating the classification accuracy of cardiotocography,” Clin Epidemiol Glob Health, vol. 7, no. 2, pp. 160–164, Jun. 2019, doi: 10.1016/j.cegh.2018.03.004.
N. Kim, “The limit distribution of a modified Shapiro–Wilk statistic for normality to Type II censored data,” J Korean Stat Soc, vol. 40, no. 3, pp. 257–266, Sep. 2011, doi: 10.1016/J.JKSS.2010.10.004.
DOI: http://dx.doi.org/10.26623/transformatika.v21i2.8886
Refbacks
- There are currently no refbacks.
| View My Stats |
Jurnal Transformatika : Journal Information Technology by Department of Information Technology, Faculty of Information Technology and Communication, Semarang University is licensed under a Creative Commons Attribution 4.0 International License.