Klasifikasi Jenis Buah Nanas Menggunakan Convolution Neural Network
DOI:
https://doi.org/10.26623/transformatika.v21i2.6369Keywords:
Convolutional Neural Network, Klasifikasi, NanasAbstract
Indonesia is one of the countries with gread agricultural potential. One of the products of agriculture in Indonesia is pineapple. Pineapple is a tropical plant with edible fruit and one of the maximum economically vital plants in the Bromeliaceous family. The process of selecting pineapple species is generally very dependent on human perception. The development of technology and science makes it possible to perform classification or in terms of object selection using technology based on digital image-based characteristics. Images are used as a source of information that can be used to classify objects. One of the deep learning methods used is Convolutional Neural Networks (CNN) because they have a high deep network and are widely used to image data. Deep learning in Computer Vision has good capabilities in, one of which is image classification or object classification in images, and the network in CNN has a special layer, namely the convolution layer, The image convolution process in this study uses the keras package on GoogleColab, because making a neural network model using Keras does not need to write code to express mathematical calculations individually. Testing using a sample of 120 pineapple images shows an accuracy rate of 91,66% which is considered to be able to identify 3 types of pineapple fruit.References
J. Ardi, M. Akrinisa, S. Mp, and M. A. M. Si, KERAGAMAN MORFOLOGI TANAMAN NANAS( ANANAS COMOSUS (L) MERR) DI KABUPATEN INDRAGIRI, p. 5, 2019.
A. Basuki, Pengantar PENGOLAHAN CITRA, p. 33.
Zunaidi, M., Ramadhan, M., & Winata, H. (2015). Faktor Penentu Tingkat Keberhasilan Sistem Deteksi Wajah pada Citra Digital. 2, 10.
W. Gazali, H. Soeparno, and J. Ohliati, PENERAPAN METODE KONVOLUSI DALAM PENGOLAHAN CITRA DIGITAL, vol. 12, no. 2, p. 11.
Azhari, K. (2021) Klasifikasi Jenis-Jenis Buah Nanas menggunakan learning vector quantization (LVQ). KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 1(2), pp. 357-368. https://doi.org/10.24002/konstelasi.v1i2.4261.
Yudistira, N. (2021). Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif. EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, 11(2), 78. https://doi.org/10.36448/expert.v11i2.2063
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (Adaptive
Computation and Mechine Learning Series). The IMT Press.
W. S. Eka Putra, Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101, J. Tek. ITS, vol. 5, no. 1, Mar. 2016, doi: 10.12962/j23373539.v5i1.15696.
Eka Putra, W. S. (2016). Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101. Jurnal Teknik ITS, 5(1).
S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification, Neurocomputing, vol. 378, pp. 112 119, Feb. 2020, doi: 10.1016/j.neucom.2019.10.008.
Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., Dutta, A. K., & Almotairi, S. (2022). A Comparison of Pooling Methods for Convolutional Neural Networks. Applied Sciences, 12(17), 8643.
Wicaksono Putra, A. B., Trisna Aryuna, M., & Malani, R. (2021). Kompresi Citra Digital Dengan Basis Komponen Warna RGB Menggunakan Metode K-Means Clustering. Jurnal Komputer Terapan, Vol. 7 No. 1 (2021), 14 23.
Rosebrock, A. (2017). Deep Learning for Computer Vision with Python. Pyimagesearch.
A. Zafar et al., A Comparison of Pooling Methods for Convolutional Neural Networks, Appl. Sci., vol. 12, no. 17, p. 8643, Aug. 2022, doi: 10.3390/app1217864.
R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, Gated Softmax Classiï¬cation, p. 9 R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, Gated Softmax Classiï¬cation, p. 9.
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.