IDENTIFIKASI PENYAKIT JANTUNG MENGGUNAKAN MACHINE LEARNING: STUDI KOMPARATIF

Endah Septa Sintiya, Rizdania Rizdania, Ashri Shabrina Afrah, Agung Pramudhita

Abstract


Heart disease is the number one cause of death globally. This condition is followed by an unhealthy lifestyle. Heart disease prediction needs to be done considering the importance of health. The presence of machine learning has made it easier for humans to make early detection of patterns that are close to heart disease. Prediction of heart disease is important given the behavior of people who are still prone to risk factors. Conditions where predictions using machine learning for heart disease have not been compared with many using machine learning methods. Predictions of heart disease are needed along with the interrelationships of the variables. This research compares 6 machine learning methods for disease classification with KNN, Naïve Bayes, Decision tree, Random forest, logistic regression, and SVM. The final classification obtained ranking accuracy with the highest value of 82% in the KNN method with the confusion matrix test, precision, accuracy, re-call, and fi-score. These results can be applied to real case studies of heart disease

Keywords


Identifikasi, machine learning, penyakit jantung

References


WHO, “WHO,” 2023. https://www.who.int/health-topics/cardiovascular-diseases (accessed Jan. 16, 2023).

Kemenkes, “kemenkes,” Sehat Negeriku, Sep. 28, 2022. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220929/0541166/penyakit-jantung-penyebab-utama-kematian-kemenkes-perkuat-layanan-primer/ (accessed Jan. 16, 2023).

“CVD WHO,” 2023. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed Jan. 16, 2023).

N. Musyaffa and B. Rifai, “MODEL SUPPORT VECTOR MACHINE BERBASIS PARTICLE SWARM OPTIMIZATION UNTUK PREDIKSI PENYAKIT LIVER,” vol. 3, no. 2, 2018.

M. Bari, S. H. Sitorus, and U. Ristian, “IMPLEMENTASI METODE NAÏVE BAYES PADA APLIKASI PREDIKSI PENYEBARAN WABAH PENYAKIT ISPA (Studi Kasus: Wilayah Kota Pontianak),” vol. 06, no. 03, 2018.

S. Sulastri, K. Hadiono, and M. T. Anwar, “ANALISIS PERBANDINGAN KLASIFIKASI PREDIKSI PENYAKIT HEPATITIS DENGAN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR, NAÏVE BAYES DAN NEURAL NETWORK,” Dinamik, vol. 24, no. 2, pp. 82–91, May 2020, doi: 10.35315/dinamik.v24i2.7867.

E. C. P. Witjaksana, R. Saedudin, and V. P. Widartha, “PERBANDINGAN AKURASI ALGORITMA RANDOM FOREST DAN ALGORITMA ARTIFICIAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT DIABETES”.

R. Ridho, “KLASIFIKASI DIAGNOSIS PENYAKIT COVID-19 MENGGUNAKAN METODE DECISION TREE”.

maskuri, “Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke,” J. Ilm. Intech Inf. Technol. J. UMUS, 2022.

V. Angkasa and J. J. Pangaribuan, “KOMPARASI TINGKAT AKURASI RANDOM FOREST DAN KNN UNTUK MENDIAGNOSIS PENYAKIT KANKER PAYUDARA,” Inf. Syst. Dev., vol. 7, 2022.

“UCI Machine Learning Repository: Heart Disease Data Set.” https://archive.ics.uci.edu/ml/datasets/Heart+Disease (accessed Jan. 16, 2023).

F. Hermawan and H. Agung, “Implementasi Metode K-Nearest Neighbor Pada Aplikasi Data Penjualan PT. Multitek Mitra Sejati,” vol. 4, 2017.




DOI: http://dx.doi.org/10.26623/transformatika.v21i2.6274

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.