The Application of Na ve Bayes Classifier Based Feature Selection on Analysis of Online Learning Sentiment in Online Media
Abstract
There are problems that still exist in online learning including limited-reach networks, inadequate facilities and infrastructure, and others. This study discussed the analysis of sentiment which used the Na ve Bayes Classifier (NBC) method with XGBoost feature selection as a performance improvement that took data from news portals. The results of this study showed that graph data on the application of online learning forms in Indonesia had a "Negative" opinion. Performance testing of the NBC method based on XGBoost feature selection was conducted four times. The first experiment resulted in an accuracy value of 60.18% with 50/50 split data. The next experiment had an accuracy value of 56.92% with 70/30 split data. After that, the third experiment resulted in an accuracy value of 65.90% with 80/20 split data. The result of the last experiment was an accuracy value of 63.63% with 90/10 split data. After using XGBoost feature selection, it produced an accuracy of 60.18%, 67.69%, 70.45%, and 77.27%. The study also produced the highest average score at 10-Fold Cross-Validation in the second trial with a score of 65.62%.
Keywords
Full Text:
PDFReferences
J. L. Moore, C. Dickson-deane, and K. Galyen, e-Learning , online learning , and distance learning environments : Are they the same ?, Internet High. Educ., pp. 1 7, 2010, doi: 10.1016/j.iheduc.2010.10.001.
J. Gikas and M. M. Grant, Mobile computing devices in higher education : Student perspectives on learning with cellphones , smartphones & social media, Internet High. Educ., vol. 19, pp. 18 26, 2013.
L. Handayani, Keuntungan , Kendala dan Solusi Pembelajaran Online Selama Pandemi Covid-19 : Studi Ekploratif di SMPN 3 Bae Kudus Lina Handayani, J. Ind. Eng. Manag. Res. ( JIEMAR), vol. 1, no. 2, pp. 15 23, 2020.
M. K. Anam, Rahmaddeni, M. B. Firdaus, H. Asnal, and Hamdani, Sentiment Analysis to analyze Vaccine Enthusiasm in Indonesia on Twitter Social Media, JAIA J. Artif. Intell. Appl., vol. 1, no. 2, pp. 23 27, 2021.
Agus Purwanto et al., Studi Eksploratif Dampak Pandemi COVID-19 Terhadap Proses Pembelajaran Online di Sekolah Dasar, J. Educ. Psychol. Couns., vol. 2, no. 1, pp. 1 12, 2020.
R. H. S. Aji, Dampak Covid-19 pada Pendidikan di Indonesia: Sekolah, Keterampilan, dan Proses Pembelajaran, SALAM J. Sos. dan Budaya Syar-i, vol. 7, no. 5, p. 402, 2020, doi: 10.15408/sjsbs.v7i5.15314.
A. Sadikin and A. Hamidah, Pembelajaran Daring di Tengah Wabah Covid-19, BIODIK J. Ilm. Pendidik. Biol., vol. 6, no. 2, pp. 214 224, 2020, doi: 10.22437/bio.v6i2.9759.
R. A. Stein, COVID-19 and rationally layered social distancing, Int. J. Clin. Pract., vol. 74, no. 7, pp. 1 3, 2020, doi: 10.1111/ijcp.13501.
M. K. Anam, Analisis Respons Netizen Terhadap Berita Politik Di Media Online, J. Ilm. Ilmu Komput., vol. 3, no. 1, pp. 14 21, 2017, doi: 10.35329/jiik.v3i1.62.
A. Rakhman and M. Rifqi Tsani, Analisis Sentimen Review Media Massa Menggunakan Metode C4.5 Berbasis Forward Selection, Smart Comp, vol. 8, no. 2, pp. 78 82, 2019, doi: 10.30591/smartcomp.v8i2.1491.
Y. Cahyono, Analisis Sentiment pada Sosial Media Twitter Menggunakan NaÑ—ve Bayes Classifier dengan Feature Selection Particle Swarm Optimization dan Term Frequency, J. Inform. Univ. Pamulang, vol. 2, no. 1, p. 14, 2017, doi: 10.32493/informatika.v2i1.1500.
A. N. Ulfah and M. K. Anam, Analisis Sentimen Hate Speech Pada Portal Berita Online Menggunakan Support Vector Machine (SVM), JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 1, pp. 1 10, 2020, doi: 10.35957/jatisi.v7i1.196.
M. K. Anam, B. N. Pikir, M. B. Firdaus, S. Erlinda, and Agustin, Penerapan Na ve Bayes Classifier , K-Nearest Neighbor dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah, Matrik J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139 150, 2021, doi: 10.30812/matrik.v21i1.1092.
I. Taufik and S. A. Pamungkas, ANALISIS SENTIMEN TERHADAP TOKOH PUBLIK MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (SVM), J. LOG!K@, vol. 8, no. 1, pp. 69 79, 2018.
A. Turmudi and K. S. Yasah, ANALISA SENTIMEN TWEET INDONESIA MENGGUNAKAN FITUR EKSTRASI DAN TEKNIK CROSS VALIDATION TERHADAP MODEL NA VE BAYES, e-Proceeding Eng., vol. 10, no. 4, p. 275, 2020, doi: 10.35393/1730-006-002-014.
C. Jaya and K. Muslim, Analisis Sentimen Pada Media Daring Tentang Pemilihan Presiden Indonesia Tahun 2019 Menggunakan Metode Na ve Bayes, e-Proceeding Eng., vol. 6, no. 2, p. 9698, 2019.
R. Nadia, K. Muslim, and F. Nhita, Analisis Dan Implementasi Algoritma Na ve Bayes Classifier Terhadapa Pemilihan Gubernur Jawa Barat 2018 Pada Media Online, e-Proceeding Eng., vol. 5, no. 1, pp. 1678 1700, 2018.
Paisal, Analisis Sentimen Masyarakat Berdasarkan Opini dari Sosial Media Menggunakan Metode Naive Bayes Classifier ( Study Kasus : Universitas Sjakhyakirti ), J. Ilm. Inform. Glob., vol. 11, no. 01, pp. 41 46, 2020.
S. Yualinda, D. R. Wijaya, and E. Hernawati, Aplikasi Berbasis Dataset E-Commerce Untuk Prediksi Kemiskinan Menggunakan Algoritma Na ve Bayes, Xgboost Dan Similarity Based Feature Selection, e-Proceeding Appl. Sci., vol. 6, no. 2, pp. 9 11, 2020.
A. P. Natasuwarna, Seleksi Fitur Support Vector Machine pada Analisis Sentimen Keberlanjutan Pembelajaran Daring, Techno.COM, vol. 19, no. 4, pp. 437 448, 2020.
B. D. C, A. Amelia, U. Hasanah, A. M. Putra, and H. Rahman, Analisis Keefektifan Pembelajaran Online di Masa Pandemi Covid-19, Pendidik. Guru Sekol. Dasar, pp. 28 37, 2020.
W. Duan, Q. Cao, Y. Yu, and S. Levy, Mining Online User-Generated Content : Using Sentiment Analysis Technique to Study Hotel Service Quality, Hawaii Int. Conf. Syst. Sci. Min., 2013, doi: 10.1109/HICSS.2013.400.
J. Chen, H. Huang, S. Tian, and Y. Qu, Feature selection for text classification with Na ve Bayes, Expert Syst. Appl., vol. 36, no. 3, pp. 5432 5435, 2009, doi: 10.1016/j.eswa.2008.06.054.
M. Zhao, C. Fu, L. Ji, K. Tang, and M. Zhou, Feature selection and parameter optimization for support vector machines : A new approach based on genetic algorithm with feature chromosomes, Expert Syst. Appl., vol. 38, no. 5, pp. 5197 5204, 2011, doi: 10.1016/j.eswa.2010.10.041.
A. Taufik, Optimasi Particle Swarm Optimization Sebagai Seleksi Fitur Pada Analisis Sentimen Review Hotel Berbahasa Indonesia Menggunakan Algoritma Na ve Bayes, J. Tek. Komput., vol. III, no. 2, pp. 40 47, 2017.
V. Arun, M. Krishna, B. V. Arunkumar, S. K. Padma, and V. Shyam, Exploratory Boosted Feature Selection and Neural Network Framework for Depression Classification, Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. 3, p. 61, 2018, doi: 10.9781/ijimai.2018.10.001.
I. L. Cherif and A. Kortebi, On using eXtreme Gradient Boosting (XGBoost) Machine Learning algorithm for Home Network Trafï¬c Classiï¬cation, Wirel. Days, 2019.
I. M. K. Karo, Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan, J. Softw. Eng. Inf. Commun. Technol., vol. 1, no. 1, pp. 10 16, 2020.
S. Saifullah, Y. Fauziyah, and A. S. Aribowo, Comparison of machine learning for sentiment analysis in detecting anxiety based on social media data, J. Inform., vol. 15, no. 1, pp. 45 55, 2021, doi: 10.26555/jifo.v15i1.a20111.
I. Rozi, S. Pramono, and E. Dahlan, Implementasi Opinion Mining (Analisis Sentimen) Untuk Ekstraksi Data Opini Publik Pada Perguruan Tinggi, J. EECCIS, vol. 6, no. 1, pp. 37 43, 2012.
J. H. Friedman, Greedy function Approximation: A Gradient Boosting Machine, Ann. Stat., vol. 29, no. 5, pp. 1189 1232, 2001, doi: 10.1214/aos/1013203451.
M. K. Anam, M. I. Mahendra, W. Agustin, Rahmaddeni, and Nurjayadi, Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA), Intensif, vol. 6, no. 1, pp. 2549 6824, 2022, doi: 10.29407/intensif.v6i1.15870.
T. Chen and C. Guestrin, XGBoost : A Scalable Tree Boosting System, pp. 785 794, 2016.
Y. T. Pratama, F. A. Bachtiar, and N. Y. Setiawan, Analisis Sentimen Opini Pelanggan Terhadap Aspek Pariwisata Pantai Malang Selatan Menggunakan TF-IDF dan Support Vector Machine, J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6244 6252, 2018.
B. N. Pikir, M. K. Anam, H. Asnal, Rahmaddeni, and T. A. Fitri, Sentiment Analysis of Technology Utilization by Pekanbaru City Government Based on Community Interaction in Social Media, JAIA J. Artif. Intell. Appl., vol. 2, no. 1, pp. 32 40, 2021.
DOI: http://dx.doi.org/10.26623/transformatika.v20i1.5144
Refbacks
- There are currently no refbacks.
| View My Stats |
Jurnal Transformatika : Journal Information Technology by Department of Information Technology, Faculty of Information Technology and Communication, Semarang University is licensed under a Creative Commons Attribution 4.0 International License.