Classification Covid-19 Based on X-Ray Using GLCM and ANN Backpropagation

Ghafur Ade Riyanto

Abstract


Coronavirus (Covid-19) is a disease that belongs to a large family of disorders that can cause mild to severe symptoms. The coronaviruses Middle East Respiratory Syndrome (MERS) and Serious Acute Respiratory Syndrome (SARS) are two types of coronaviruses that cause severe illness (SARS). According to WHO estimates as of December 17, 2021, Covid-19 has infected about 271,963,258 individuals, with a death rate of 5,331,019 cases. Hospitals only have a limited number of Covid-19 test kits because of the daily increase in cases. As a result, to prevent the spread of Covid-19 among persons, it is necessary to develop an automatic detection method as quickly as feasible, as well as other diagnosis options. The goal of this research was to employ GLCM to extract features and the Backpropagation Neural Network classification technique to automatically develop a Covid-19 diagnosis system by classifying the lungs into two groups: normal lungs and Covid-19 lungs. Pre-processing, segmentation, feature extraction, and classification were all used in this study's lung classification method. The accuracy of the test findings was assessed to be 85%. The sensitivity value for the normal class was 92.5%, whereas the sensitivity value for the Covid-19 class was 77.5%. The specification value for the normal class was 22.5%, whereas the specification value for the covid-19 class was 7.5%. It may be deduced from the accuracy, sensitivity, and specification percentages that the developed system is capable of categorizing lungs using X-Ray lung pictures.


Keywords


Covid-19; GLCM; Image Processing; Backpropagation Neural Network

References


A. Rafikasari, Formulating Indonesia s Covid-19 Policy based on South Korea s Experience, J. Humanit. Educ. Dev., vol. 2, no. 3, pp. 170 176, 2020, doi: 10.22161/jhed.2.3.3.

T. Liang, Handbook of COVID-19 Prevention and Treatment, Handb. Covid-19, Prev. Treat., p. 68, 2020.

R. Djalante et al., Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020, Prog. Disaster Sci., vol. 6, p. 100091, 2020, doi: 10.1016/j.pdisas.2020.100091.

World Health Organization, WHO Coronavirus Disease (COVID-19) Dashboard, 2021. [Online]. Available: https://covid19.who.int/. [Accessed: 01-Mar-2021].

T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra Acharya, Automated detection of COVID-19 cases using deep neural networks with X-ray images, Comput. Biol. Med., vol. 121, no. April, p. 103792, 2020, doi: 10.1016/j.compbiomed.2020.103792.

D.-P. Fan et al., Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images, IEEE Trans. Med. Imaging, vol. XX, no. XX, pp. 1 1, 2020, doi: 10.1109/tmi.2020.2996645.

K. Li et al., CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19), Eur. Radiol., 2020, doi: 10.1007/s00330-020-06817-6.

A. M. Alqudah, S. Qazan, H. Alquran, I. A. Qasmieh, and A. Alqudah, Covid-2019 Detection Using X-Ray Images And Artificial Intelligence Hybrid Systems, 2020.

A. Zotin, Y. Hamad, K. Simonov, and M. Kurako, Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks, Procedia Comput. Sci., vol. 159, pp. 1439 1448, 2019, doi: 10.1016/j.procs.2019.09.314.

K. Roy et al., A comparative study of lung cancer detection using supervised neural network, 2019 Int. Conf. Opto-Electronics Appl. Opt. Optronix 2019, pp. 1 5, 2019, doi: 10.1109/OPTRONIX.2019.8862326.

S. Khobragade, A. Tiwari, C. Y. Patil, and V. Narke, Automatic detection of major lung diseases using Chest Radiographs and classification by feed-forward artificial neural network, 1st IEEE Int. Conf. Power Electron. Intell. Control Energy Syst. ICPEICES 2016, pp. 1 5, 2017, doi: 10.1109/ICPEICES.2016.7853683.

R. Munir, Pengolahan Citra Digital dengan Algoritmik. Bandung: Informatika, 2004.

R. C. Gonzalez, Digital Image Processing Third Edition.

D. S. Y. Kartika and D. Herumurti, Koi fish classification based on HSV color space, Proc. 2016 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2016, pp. 96 100, 2017, doi: 10.1109/ICTS.2016.7910280.

L. Yang, X. Zhang, and J. Ren, Adaptive Wiener filtering with Gaussian fitted point spread function in image restoration, ICSESS 2011 - Proc. 2011 IEEE 2nd Int. Conf. Softw. Eng. Serv. Sci., no. 2, pp. 208 212, 2011, doi: 10.1109/ICSESS.2011.5982291.

G. A. Tammana and Y. F. Zheng, Image denoising using multi-resolution coefficient support based empirical Wiener filtering, Proc. - Int. Conf. Image Process. ICIP, no. 6, pp. 2613 2616, 2006, doi: 10.1109/ICIP.2006.313022.

F. Qin, Blind image restoration based on Wiener filtering and defocus point spread function estimation, 2012 5th Int. Congr. Image Signal Process. CISP 2012, no. Cisp, pp. 360 363, 2012, doi: 10.1109/CISP.2012.6470002.

A. H. Sheer and A. A. Al-Ani, The effect of regularization parameter within non-blind restoration algorithm using modified iterative wiener filter for medical image, Proc. - 2018 1st Annu. Int. Conf. Inf. Sci. AiCIS 2018, pp. 77 81, 2019, doi: 10.1109/AiCIS.2018.00026.

Z. Mbarki, H. Seddik, and E. Ben Braiek, Non blind image restoration scheme combining parametric wiener filtering and BM3D denoising technique, 2018 4th Int. Conf. Adv. Technol. Signal Image Process. ATSIP 2018, no. 3, pp. 1 5, 2018, doi: 10.1109/ATSIP.2018.8364524.

Y. Prieto and C. S. Lindquist, Locally adaptive orientation Wiener image filter with local noise estimate, Conf. Rec. Asilomar Conf. Signals, Syst. Comput., vol. 1, pp. 338 342, 1998, doi: 10.1109/acssc.1997.680231.

S. Tena, S. Tena, and S. Tena, Image Enhancement Mengggunakan Metode Linear Filtering Dan Stationary Wavelet Transform, Maj. Ilm. Tek. Elektro, vol. 8, no. 2, 2012, doi: 10.24843/10.24843/MITE.

S. Gong, C. Liu, Y. Ji, B. Zhong, Y. Li, and H. Dong, Advanced Image and Video Processing Using MATLAB (Modeling and Optimization in Science and Technologies), 1st ed., Cham: Springer International Publishing AG, 2019.

S. Gong, C. Liu, Y. Ji, B. Zhong, and Y. Li, Modeling and Optimization in Science and Technologies: Advanced Image and Video Processing Using MATLAB. Cham: Springer International Publishing AG, 2019.

E. Prasetyo, Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: Andi Publisher, 2011.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed., New York: Wiley-Interscience, 2001.

C. M. Karyati, S. Widiyanto, A. Muslim, and R. J. Suhatril, Analisis dan Pengolahan Citra Medis. Jakarta: Universitas Gunadarma, 2013.

O. Marques, Practical Image and Video Processing Using MATLAB ®. 2011.

S. Bhahri and Rachmat, Transformasi Citra Biner Menggunakan Metode Thresholding Dan Otsu Thresholding, J. Sist. Inf. Dan Teknol. Inf., vol. 7, no. 2, pp. 195 203, 2018.

E. Nezhadarya and R. K. Ward, A ROBUST MORPHOLOGICAL GRADIENT ESTIMATOR AND EDGE DETECTOR FOR COLOR IMAGES, Comput. Eng., pp. 1062 1065, 2010.

A. Sutikno, E. Utami, and A. Sunyoto, Penerapan Metode Morfologi Gradien Untuk Perbaikan Kualitas Deteksi Tepi Pada Citra Motif Batik, J. Teknol. Inf., 2014.

K. P. Risha and A. C. Kumar, Gradient operator in video after object detection by optical flow and morphological operation, Proc. 10th Int. Conf. Intell. Syst. Control. ISCO 2016, pp. 3 6, 2016, doi: 10.1109/ISCO.2016.7727093.

M. El Atillah and K. Elfazazy, Deep morphological gradient for recognition of Arabic alphabets, Proc. - 2019 Int. Conf. Intell. Syst. Adv. Comput. Sci. ISACS 2019, pp. 11 14, 2019, doi: 10.1109/ISACS48493.2019.9068868.

M. Nakashizuka, Image Regularization With Higher-Order Morphological Gradients, 23rd Eur. Signal Process. Conf. IMAGE, pp. 1860 1864, 2015.

U. Qidwai and C. H. Chen, Digital Image Processing An Algorithmic Approach with MATLAB. New York: CRC Press, 2009.

D. Putra, Pengolahan Citra Digital. Yogyakarta: Andi Publisher, 2010.

J. L. Semmlow, Biosignal and Biomedical Image Processing MATLAB-Based Applications. New York: Marcel Dekker, 2004.

A. Kadir and A. Susanto, Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Andi Publisher, 2013.

A. Amalia, B. D. K. Hertiana, and A. Suhendi, Image Processing on Wick Method Hydroponic Mustard Greens Leaf Growth with IoT Based Monitoring System, vol. 6, no. 2, pp. 5289 5296, 2019.

H. Masrani, I. Ruslianto, and Ilhamsyah, Aplikasi Pengenalan Pola Pada Huruf Tulisan Tangan Menggunakan Jaringan Saraf Tiruan Dengan Metode Ekstraksi Fitur Geometri, Coding, Sist. Komput. Untan, vol. 06, no. 02, pp. 69 78, 2018.

M. Bertalmio, L. Vese, G. Sapiro, and S. Osher, Image filling-in in a decomposition space, IEEE Int. Conf. Image Process., vol. 1, pp. 853 855, 2003, doi: 10.1109/icip.2003.1247097.

S. Sunoj et al., Identification and counting of soybean aphids from digital images using shape classification, Trans. ASABE, vol. 60, no. 5, pp. 1467 1477, 2017, doi: 10.13031/trans.12105.

S. Senthil and B. Ayshwarya, Lung Cancer Prediction using Feed Forward Back Propagation Neural Networks with Optimal Features, Int. J. Appl. Eng. Res., vol. 13, no. 1, pp. 318 325, 2018.

R. Rosnelly, L. Wahyuni, and J. Kusanti, Optimization of Region of Interest (ROI) Image of Malaria Parasites, J. Appl. Intell. Syst., vol. 3, no. 2, pp. 87 95, 2018, doi: 10.33633/jais.v3i2.2060.

E. Permata, R. Munarto, and G. A. . Indra, Klasifikasi Glaukoma Menggunakan Neural Network Backpropagation, Pros. SENTIA 2016, vol. 8, pp. 158 163, 2016.

D. Satria and M. Mushthofa, Perbandingan Metode Ekstraksi Ciri Histogram dan PCA untuk Mendeteksi Stoma pada Citra Penampang Daun Freycinetia, J. Ilmu Komput. dan Agri-Informatika, vol. 2, no. 1, p. 20, 2013.

I. G. R. A. Sugiartha, M. Sudarma, and I. M. O. Widyantara, Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images (CLUE), Maj. Ilm. Teknol. Elektro, vol. 16, no. 1, p. 85, 2016.

R. Fahrizal, R. P. Parlindungan Siahaan, and R. Wiryadinata, Banten Batik Classification with Backpropagation Neural Network, 1st Int. Conf. Ind. Electr. Electron., vol. 218, pp. 9 18, 2018, doi: 10.1051/matecconf/201821803012.




DOI: http://dx.doi.org/10.26623/transformatika.v19i2.4518

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.