ANALISIS DAN KOMPARASI ALGORITMA NA VE BAYES DAN C4.5 UNTUK KLASIFIKASI LOYALITAS PELANGGAN MNC PLAY KOTA SEMARANG
DOI:
https://doi.org/10.26623/transformatika.v18i2.2541Keywords:
Classification, Customers Loyalty, Na ve Bayes, C4.5.Abstract
Customer loyalty is an important factor to the survival of a company. The problem facting today is related to the descreasing number of customer loyalty that happened to PT MNC Play. If this is allowed to continue it is not impossible this will endanger the continuity of the company s business.
Keep in mind the factors that cause customers to have loyal and disloyal status, data mining classification techniques can be used to classify loyal and disloyal customers. Many data mining classification algorithms can be used, so it needs to be comparative to know the accuracy of each algorithm, the algorithem used is C4.5 and Na ve Bayes. The data used were 28,899MNC Play customer of Semarang City.
The results of the classification process were evaluated using cross validation, confusion matrix, ROC Curve to find the more accurate data mining classification algorithm to determine loyal and disloyal customers.
Keywords: Classification, Customers Loyalty, Na ve Bayes, C4.5.
References
Oktafianto, 2016, Analisis Kepuasan Mahasiswa Terhadap Pelayanan Akadmik Menggunakan Metode Algoritma C4.5, Jurnal TIM Darmajaya, vol 02, no.01 hal 1-11.
Budi Prijanto, Agustin Rusiana Sari, 2011, Analisis Tingkat Kepuasan Mahasiswa atas Layanan Akademik Berbasis Web, Prosiding Konferensi Nasional Sistem Informasi, Medan 25-26 Februari 2011
Budi Santoso, 2007, Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis, Graha Ilmu, Yogyakarta.
Eko Prasetyo, 2014, Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab, Penerbit Andi, Yogyakarta.
Suyanto, 2019, Data Mining Untuk Klasifikasi dan Klasterisasi Data Edisi Revisi, Informatika, Bandung.
Joko Suntoro, 2019, Data Mining Algoritma dan Implementasi dengan Pemrograman PHP, Elex Media Komputindo, Jakarta.
Retno Tri Vulandari, 2017, Data Mining Teori dan Aplikasi Rapidminer, Gava Media, Yogyakarta.
Sugiyono, 2002, Statistia Untuk Penelitian, Alfabeta, Bandung
Witten, 2007, Data Mining Complications: Overfitting Statistical modeling one atribut does all the work, Margan Kaufmann Publisher, Burlington.
Gorunnesco, 2011, Data mining: concepts, model and techques, Springer, Berlin.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.