ANALISIS DAN KOMPARASI ALGORITMA NA VE BAYES DAN C4.5 UNTUK KLASIFIKASI LOYALITAS PELANGGAN MNC PLAY KOTA SEMARANG

Yohana Tri Widayati, Yani Prihati, Stephanus Widjaja

Abstract


Customer loyalty is an important factor to the survival of a company. The problem facting today is related to the descreasing number of customer loyalty that happened to PT MNC Play. If this is allowed   to continue it is not impossible this will endanger the continuity of the company s business.

Keep in mind the factors that cause customers to have loyal and disloyal status, data mining classification techniques can be used to classify loyal and disloyal customers. Many data mining classification algorithms can be used, so it needs to be comparative to know the accuracy of each algorithm, the algorithem used is C4.5 and Na ve Bayes. The data used were 28,899MNC Play customer of Semarang City.

The results of the classification   process were evaluated using cross validation, confusion matrix, ROC Curve to find the more accurate data mining classification algorithm to determine loyal and disloyal customers.

Keywords: Classification, Customers Loyalty, Na ve Bayes, C4.5.


Keywords


Classification; Customers Loyalty; Na ve Bayes; C4.5.

References


Oktafianto, 2016, Analisis Kepuasan Mahasiswa Terhadap Pelayanan Akadmik Menggunakan Metode Algoritma C4.5, Jurnal TIM Darmajaya, vol 02, no.01 hal 1-11.

Budi Prijanto, Agustin Rusiana Sari, 2011, Analisis Tingkat Kepuasan Mahasiswa atas Layanan Akademik Berbasis Web, Prosiding Konferensi Nasional Sistem Informasi, Medan 25-26 Februari 2011

Budi Santoso, 2007, Data Mining Teknik Pemanfaatan Data Untuk Keperluan Bisnis, Graha Ilmu, Yogyakarta.

Eko Prasetyo, 2014, Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab, Penerbit Andi, Yogyakarta.

Suyanto, 2019, Data Mining Untuk Klasifikasi dan Klasterisasi Data Edisi Revisi, Informatika, Bandung.

Joko Suntoro, 2019, Data Mining Algoritma dan Implementasi dengan Pemrograman PHP, Elex Media Komputindo, Jakarta.

Retno Tri Vulandari, 2017, Data Mining Teori dan Aplikasi Rapidminer, Gava Media, Yogyakarta.

Sugiyono, 2002, Statistia Untuk Penelitian, Alfabeta, Bandung

Witten, 2007, Data Mining Complications: Overfitting Statistical modeling one atribut does all the work, Margan Kaufmann Publisher, Burlington.

Gorunnesco, 2011, Data mining: concepts, model and techques, Springer, Berlin.




DOI: http://dx.doi.org/10.26623/transformatika.v18i2.2541

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology  by  Department of Information Technology, Faculty of Information Technology and Communication, Semarang University  is licensed under a  Creative Commons Attribution 4.0 International License.