Aplikasi Text Mining untuk Klasterisasi Aduan Masyarakat Kota Semarang Menggunakan Algoritma K-means

Dita Afida, Erika Devi Udayanti, Etika Kartikadarma

Abstract


Social media is a service that is very supportive for government activities, especially in providing openness and community-based government. One form of its implementation is the Semarang City government through the Center for Community Complaints Management (P3M), whose task is to manage community complaints that enter one of the communication channels namely social media twitter. The number of public complaints that enter every day is very varied. This is certainly quite difficult for managers in categorizing complaints reports according to the relevant Local Government Organizations (OPD). This paper focuses on the problem of how to conduct clustering of community complaints. The data source comes from Twitter using the keyword "Laporhendi". Text document data from community complaint tweets was analyzed by text mining methods. A number of pre-processing of text data processing begins with the process of case folding, tokenizing, stemming, stopword removal and word robbering with tf-idf. In conducting cluster mapping, clustering algorithm will be used in dividing the complaint cluster, namely the k-means algorithm. Evaluation of cluster results is done by using purity to determine the accuracy of the results of grouping or clustering.


Keywords


community complaint; text mining; kmeans algorithm; purity

References


M. Afzali and S. Kumar, “Text Document Clustering : Issues and Challenges,” 2019 Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput., pp. 263–268, 2019.

X. et al Wu, “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, pp. 1–37, 2008.

S. Karyadi and H. Yasin, “Analisis Kecenderungan Informasi Dengan Menggunakan Metode Text Mining,” J. Gaussian, vol. 5, pp. 763–770, 2016.

D. S. Indraloka, B. Santosa, D. Matematika, F. Matematka, P. Alam, I. Teknologi, and S. Nopember, “Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia,” J. Sains dan Seni, vol. 6, no. 2, pp. 6–11, 2017.

R. Melita, V. Amrizal, H. B. Suseno, T. Dirjam, P. Studi, T. Informatika, and F. Sains, “Penerapan Metode Term Frequency Inverse Document Frequency (Tf-Idf) Dan Cosine Similarity Pada Sistem Temu Kembali Informasi Untuk Mengetahui Syarah Hadits Berbasis Web ( Studi Kasus : Syarah Umdatil Ahkam ),” J. Tek. Inform., vol. 11, no. 2, 2018.

R. K. Dinata, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” Informatics J., vol. 5, no. 1, 2020.

J. Teknik, I. Fik, and J. N. N. Semarang-, “Klasterisasi Proses Seleksi Pemain Menggunakan Algoritma K-Means,” Universitas Dian Nuswantoro, 2015.

S. Defiyanti, M. Jajuli, T. Informatika, F. Ilmu, K. Universitas, and S. Karawang, “Implementasi Algoritma K-Means Dalam,” J. Ilm. Inf. Terap., vol. I, no. 2, pp. 62–68, 2015.

A. K. Wardhani, “Implementasi Algoritma K-Means Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Kajen Pekalongan,” J. Transform., vol. 14, pp. 30–37, 2016.

K. R. Prilianti and K. Kunci, “Aplikasi Text Mining untuk Automasi Penentuan Tren Topik Skripsi dengan Metode K-Means Clustering,” J. Cybermatika, vol. 2, no. 1, pp. 1–6, 2014.




DOI: http://dx.doi.org/10.26623/transformatika.v18i2.2362

Refbacks

  • There are currently no refbacks.


| View My Stats |

Jurnal Transformatika : Journal Information Technology by Department of Information Technology, Faculty of Information Technology and Communication, Semarang University is licensed under a Creative Commons Attribution 4.0 International License.