Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine
DOI:
https://doi.org/10.26623/transformatika.v18i1.2317Keywords:
Analisis Sentimen, Algoritma, Naive Bayes, Random Forest, Support Vector MachineAbstract
The review of the users of one application is of great help to development in improving the quality of the application and may be the means for assessments that users feel satisfied or not. The study conducted a sentiment analysis of the Ruangguru application by testing the three classification models such as Naive Bayes, Random Forest and Support Vectors Machine. The study has yielded results that from Random Forest classification model 97,16% by using Cross Validation and an AUC score of 0.996. Then accuracy with the model of Support Vector Machine classification support results in accuracy rate of 96.01% to an AUC value of 0.543 and accuracy in the testing of Naive Bayes classification model was 94,16% of AUC score 0,999. This study shows that an increase in accuracy from previous studies of 7.16% with Random Forest s final cut as a Random Forest classification model with the best performance.
References
References
H. Wahyono, Pemanfaatan Teknologi Informasi dalam Penilaian Hasil Belajar pada Generasi Milenial di Era Revolusi Industri 4.0, Proceeding Biol. Educ., vol. 3, no. 1, pp. 192 201, 2019.
T. Listyorini and A. Widodo, Perancangan Mobile Learning Mata Kuliah Sistem Operasi Berbasis Android, Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 3, no. 1, p. 25, 2013, doi: 10.24176/simet.v3i1.85.
Y. & I. B. . Maryono, Teknologi Informasi & Komunikasi. Jakarta: Yudhistira Ghalia Indonesia, 2008.
Ruangguru, Profile RuangGuru, 2020. https://ruangguru.com/general/about?utm_source=bimbelrg&utm_medium=referral&utm_campaign=footer.
F. Gunawan, M. A. Fauzi, and P. P. Adikara, Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile), Syst. Inf. Syst. Informatics J., vol. 3, no. 2, pp. 1 6, 2017, doi: 10.29080/systemic.v3i2.234.
F. F. Irfani, Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine, JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, p. 258, 2020, doi: 10.26487/jbmi.v16i3.8607.
M. R. Firdaus, F. M. Rizki, and F. M. Gaus, Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru, vol. 4, pp. 66 76, 2020.
P. Antinasari, R. S. Perdana, and M. A. Fauzi, Analisis Sentimen Tentang Opini Film Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes Dengan Perbaikan Kata Tidak Baku, vol. 1 No.12, pp. 1733 1741, 2017.
H. Annur, Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes, Ilk. J. Ilm., vol. 10, no. 2, pp. 160 165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.
A. Primajaya and B. N. Sari, Random Forest Algorithm for Prediction of Precipitation, Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
L. Ratnawati and D. R. Sulistyaningrum, Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel, vol. 8, no. 2, 2019.
D. Gunawan, R. Dwiza, D. Ardiansyah, F. Akba, and S. Alfariz, Komparasi Algoritma Support Vector Machine Dan Na ve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023, J. Tek. Komput. AMIK BSI, vol. VI No.1, 2020, doi: 10.31294/jtk.v4i2.
A. Novantirani, M. K. Sabariah, and V. Effendy, Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine, e-Proceeeding Eng., vol. 2, no. 1, pp. 1 7, 2015.
R. R. Fiska, Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera), SATIN - Sains dan Teknol. Inf., vol. 3, no. 1, p. 15, 2017, doi: 10.33372/stn.v3i1.200.
P. A. Octaviani, Y. Wilandari, and D. Ispriyanti, Penerapan Metode Klasifikasi Support Vector Machine (SVM) Pada Data Akreditasi Sekolah Dasar (SD) Di Kabupaten Magelang, J. GAUSSIAN, vol. Volume 3, pp. 811 820, 2014, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian.
Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
Transformatika is licensed under a Creative Commons Attribution 4.0 International License.