Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine
Abstract
The review of the users of one application is of great help to development in improving the quality of the application and may be the means for assessments that users feel satisfied or not. The study conducted a sentiment analysis of the Ruangguru application by testing the three classification models such as Naive Bayes, Random Forest and Support Vectors Machine. The study has yielded results that from Random Forest classification model 97,16% by using Cross Validation and an AUC score of 0.996. Then accuracy with the model of Support Vector Machine classification support results in accuracy rate of 96.01% to an AUC value of 0.543 and accuracy in the testing of Naive Bayes classification model was 94,16% of AUC score 0,999. This study shows that an increase in accuracy from previous studies of 7.16% with Random Forest s final cut as a Random Forest classification model with the best performance.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
References
H. Wahyono, Pemanfaatan Teknologi Informasi dalam Penilaian Hasil Belajar pada Generasi Milenial di Era Revolusi Industri 4.0, Proceeding Biol. Educ., vol. 3, no. 1, pp. 192 201, 2019.
T. Listyorini and A. Widodo, Perancangan Mobile Learning Mata Kuliah Sistem Operasi Berbasis Android, Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 3, no. 1, p. 25, 2013, doi: 10.24176/simet.v3i1.85.
Y. & I. B. . Maryono, Teknologi Informasi & Komunikasi. Jakarta: Yudhistira Ghalia Indonesia, 2008.
Ruangguru, Profile RuangGuru, 2020. https://ruangguru.com/general/about?utm_source=bimbelrg&utm_medium=referral&utm_campaign=footer.
F. Gunawan, M. A. Fauzi, and P. P. Adikara, Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile), Syst. Inf. Syst. Informatics J., vol. 3, no. 2, pp. 1 6, 2017, doi: 10.29080/systemic.v3i2.234.
F. F. Irfani, Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine, JBMI (Jurnal Bisnis, Manajemen, dan Inform., vol. 16, no. 3, p. 258, 2020, doi: 10.26487/jbmi.v16i3.8607.
M. R. Firdaus, F. M. Rizki, and F. M. Gaus, Analisis Sentimen Dan Topic Modelling Dalam Aplikasi Ruangguru, vol. 4, pp. 66 76, 2020.
P. Antinasari, R. S. Perdana, and M. A. Fauzi, Analisis Sentimen Tentang Opini Film Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naive Bayes Dengan Perbaikan Kata Tidak Baku, vol. 1 No.12, pp. 1733 1741, 2017.
H. Annur, Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes, Ilk. J. Ilm., vol. 10, no. 2, pp. 160 165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.
A. Primajaya and B. N. Sari, Random Forest Algorithm for Prediction of Precipitation, Indones. J. Artif. Intell. Data Min., vol. 1, no. 1, p. 27, 2018, doi: 10.24014/ijaidm.v1i1.4903.
L. Ratnawati and D. R. Sulistyaningrum, Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel, vol. 8, no. 2, 2019.
D. Gunawan, R. Dwiza, D. Ardiansyah, F. Akba, and S. Alfariz, Komparasi Algoritma Support Vector Machine Dan Na ve Bayes Dengan Algoritma Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023, J. Tek. Komput. AMIK BSI, vol. VI No.1, 2020, doi: 10.31294/jtk.v4i2.
A. Novantirani, M. K. Sabariah, and V. Effendy, Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine, e-Proceeeding Eng., vol. 2, no. 1, pp. 1 7, 2015.
R. R. Fiska, Penerapan Teknik Data Mining dengan Metode Support Vector Machine (SVM) untuk Memprediksi Siswa yang Berpeluang Drop Out (Studi Kasus di SMKN 1 Sutera), SATIN - Sains dan Teknol. Inf., vol. 3, no. 1, p. 15, 2017, doi: 10.33372/stn.v3i1.200.
P. A. Octaviani, Y. Wilandari, and D. Ispriyanti, Penerapan Metode Klasifikasi Support Vector Machine (SVM) Pada Data Akreditasi Sekolah Dasar (SD) Di Kabupaten Magelang, J. GAUSSIAN, vol. Volume 3, pp. 811 820, 2014, [Online]. Available: http://ejournal-s1.undip.ac.id/index.php/gaussian.
DOI: http://dx.doi.org/10.26623/transformatika.v18i1.2317
Refbacks
- There are currently no refbacks.
| View My Stats |
Jurnal Transformatika : Journal Information Technology by Department of Information Technology, Faculty of Information Technology and Communication, Semarang University is licensed under a Creative Commons Attribution 4.0 International License.