SISTEM APLIKASI PREDIKSI PENYAKIT DIABETES MENGGUNAKAN FITURE SELECTION KORELASI PEARSON DAN KLASIFIKASI NA VE BAYES
Abstract
Full Text:
PDFReferences
Chan, M. (2013). Global Report On Diabetes. World Health Organization.
Cheruku, R., Edla, D. R., Kuppili, V., & Dharavath, R. (2017). A Fuzzy Rule Miner Integrating Rough Set Feature Selection and Bat Optimization for Detection of Diabetes Disease Author: Applied Soft Computing Journal. https://doi.org/10.1016/j.asoc.2017.06.032
Colagiuri, R., Brown, J., & Dian, K. (2011). Global Diabetes Plan At A Glance. International Diabetes Federation.
Farid, D., Zhang, L., Mofizur, C., Hossain, M. A., & Strachan, R. (2014). Hybrid decision tree and na ve Bayes classifiers for multi-class classification tasks. Expert Systems With Applications, 41(4), 1937 1946. https://doi.org/10.1016/j.eswa.2013.08.089
Huang, Y., Mccullagh, P., Black, N., & Harper, R. (2007). Feature selection and classification model construction on type 2 diabetic patients data. https://doi.org/10.1016/j.artmed.2007.07.002
Jiang, L., Cai, Z., Zhang, H., & Wang, D. (2012). Not so greedy : Randomly Selected Naive Bayes. Expert Systems With Applications, 39(12), 11022 11028. https://doi.org/10.1016/j.eswa.2012.03.022
Kesehatan, K. (2014). Situasi dan Analisis Diabetes. Kesehatan, Infodatin pusat data dan informasi kementrian RI.
Kumar, N., & Abedin, M. (2017). Comparative Approaches for Classification of Diabetes Mellitus Data: Machine Learning Paradigm. Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2017.09.004
Mansourypoor, F., & Asadi, S. (2017). Development of a Reinforcement Learning-based Evolutionary Fuzzy Rule-Based System for Diabetes Diagnosis Fatemeh. Computers in Biology and Medicine. https://doi.org/10.1016/j.compbiomed.2017.10.024
Nai-arun, N., & Moungmai, R. (2015). Comparison of Classifiers for the Risk of Diabetes Prediction. Procedia - Procedia Computer Science, 69, 132 142. https://doi.org/10.1016/j.procs.2015.10.014
Rigla, M., Pons, B., & Elena, M. (2017). A web-based clinical decision support system for gestational diabetes : Automatic diet prescription and detection of insulin needs. International Journal of Medical Informatics. https://doi.org/10.1016/j.ijmedinf.2017.02.014
Zheng, T., Xie, W., Xu, L., He, X., Zhang, Y., You, M., Yang, G., & Chen, Y. (2016). A Machine Learning-based Framework to Identify Type 2 Diabetes through Electronic Health Records. International Journal of Medical Informatics. https://doi.org/10.1016/j.ijmedinf.2016.09.014.
DOI: http://dx.doi.org/10.26623/jprt.v%25vi%25i.3089
Refbacks
- There are currently no refbacks.
Penerbit
Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Semarang
Alamat Redaksi:
Jl.Soekarno-Hatta, Tlogosari, Semarang, Jawa Teangah, Indonesia 50196 Telp: 024-6702757 psw: 8302 Fax: 024-6702272 e-mail: jprt@usm.ac.id
This work is licensed under a Creative Commons Attribution 4.0 International License.