IMPLEMENTASI ALGORITMA BACKPROPAGATION UNTUK MEMPREDIKSI JUMLAH JIWA TERDAMPAK BANJIR DI DKI JAKARTA
Abstract
Floods are natural disasters that often occur in the DKI Jakarta area. DKI Jakarta government needs to anticipate the impact of the flood disaster by estimating the number of people affected by the flood. The number of people affected by floods that are uncertain every month can be predicted for the future. There are many ways that can be predict the number of people affected by floods, one of them is artificial neural network method. One of learning algorithms in artificial neural networks is backpropagation algorithm. This research applies an artificial neural network method with backpropagation algorithm to predict the number of people affected by floods in DKI Jakarta. In this research, training process was carried out 100 times on each network architecture (12-10-1, 12-12-1, 12-14-1) with several parameters such as epoch, momentum constant, and learning rate. The best results in the training process are carried out to testing process to test the network. In the testing process, the best results are 12-10-1 architecture with an accuracy rate 98.704%. Based on these results, it can be said that this network can predict well and can be implemented for forecasting the number of people affected by floods in DKI Jakarta.
Full Text:
PDFReferences
Agus Perdana Windarto, D. N., Anjar Wanto, Frinto Tambunan, M. S. H., Muhammad Noor Hasan Siregar, M. R. L., & Solikhun, Yusra Fadhillah, D. N. (2019). Jaringan Saraf Tiruan: Algoritma Prediksi dan Implementasi. Journal of Chemical Information and Modeling (Vol. 53).
Riyanto, E. (2017). Peramalan Harga Saham Menggunakan Jaringan Syaraf Tiruan Secara Supervised Learning Dengan Algoritma Backpropagation. Jurnal Informatika Upgris, 3(2), 137 142. https://doi.org/10.26877/jiu.v3i2.1899
Triyono, A., Santoso, A. J., & Pranowo. (2016). Penerapan Metode Jaringan Syaraf Tiruan Backpropagation Untuk Meramalkan Harga Saham (IHSG). Jurnal Sistem Dan Informatika, 11, 165 172. Retrieved from https://media.neliti.com/media/publications/129675-ID-penerapan-metode-jaringan-syaraf-tiruan.pdf
Vivian S. dan Rismon H.S. (2020). Pemrograman Matlab untuk Teknik Sistem Kontrol dan Sistem Komunikasi. Balige Publishing, Sumatera Utara.
Yanto, M., Mandala, E. P. W., Putri, D. E., & Yuhandri, Y. (2018). Peramalan Penjualan Pada Toko Retail Menggunakan Algoritma Backpropagation Neural Network. Jurnal Media Informatika Budidarma, 2(3), 110 117. https://doi.org/10.30865/mib.v2i3.811
Yohana, C., Griandini, D., & Muzambeq, S. (2017). Penerapan Pembuatan Teknik Lubang Biopori Resapan Sebagai Upaya Pengendalian Banjir. Jurnal Pemberdayaan Masyarakat Madani (JPMM), 1(2), 296 308. https://doi.org/10.21009/jpmm.001.2.10
DOI: http://dx.doi.org/10.26623/jisl.v5i2.5346
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View My Stats
Redaksi:
[Journal Information Science and Library] adalah jurnal ilmiah yang di terbitkan oleh UPT. Perpustakaan Universitas Semarang - Jl. Soekarno Hatta, Tlogosari Kulon, Pedurungan, Semarang, Jawa Tengah, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License.