Ensiklopedia Digital Varietas Ubi Jalar Berdasarkan Klasifikasi Citra Daun Menggunakan KNearest Neighbor
Abstract
Sweet potato is a source of carbohydrates which is an alternative food in order to accelerate food diversification. This is due to the high productivity of sweet potato so it is very profitable to cultivate. Sweet potato has many varieties, one of the differences is observed based on leaf shape which has four kinds of leaf shape, namely cordate, lobed, triangular and almost divided. The problem that often occurs is that many varieties have similarities, causing difficulties in distinguishing sweet potato varieties, especially for novice farmers. To overcome this problem, the researchers created a digital encyclopedia of sweet potato varieties based on leaf shape using computer vision. The parameters used are area, perimeter, metric, length, diameter, ASM, IDM, entropy, contrast and correlation at angles of 0 °, 45 °, 90 ° and 135 °. The amount of data used is 256 training data and 40 testing data. The K-Nearest Neighbor method is able to classify sweet potato leaf images for digital encyclopedias with an accuracy of 95% with variations in the values of K = 23 and K = 25.
Keywords
Full Text:
PDFReferences
A. E. Yunianto et al., Ekologi Pangan dan Gizi, 1st ed. Yayasan Kita Menulis, 2021.
Badan Pusat Statistik, Produksi Tanaman Pangan 2015, 2015.
K. Purbasari and A. R. Sumadji, Studi Variasi Ubi Jalar (Ipomoea Batatas L) Berdasarkan Karakter Morfologi di Kabupaten Ngawi, Florea : Jurnal Biologi dan Pembelajarannya, vol. 5, no. 2, p. 78, Nov. 2018, doi: 10.25273/florea.v5i2.3359.
A. Hasanah and N. Nafi, KLASIFIKASI JENIS UMBI BERDASARKAN CITRA MENGGUNAKAN SVM DAN KNN, Jurnal SPIRIT, vol. 12, no. 1, pp. 48 51, 2020.
T. Haryadi, Rancang Bangun Perhitungan Dimensi Daun Umbi-Umbian Menggunakan Citra Digital, Malang, 2013.
R. Wulanningrum and A. Teguh, Aplikasi Pengenalan Ubi Jalar Berdasarkan Pola Daun Menggunakan Principal Component Analysis, Generation Journal, vol. 1, no. 1, pp. 7 12, Jan. 2017.
Y. Sari, M. Alkaff, and M. Arif Rahman, Identifi-kasi Penyakit Tanaman Ubi Kayu Berdasarkan Cit-ra Daun Menggunakan Metode Probabilistic Neural Network (PNN), Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, pp. 1 9, Jul. 2021, doi: 10.31603/komtika.v5i1.4605.
A. M. Nanda Imron and Z. E. Fitri, A Classification of Platelets in Peripheral Blood Smear Image as an Early Detection of Myeloproliferative Syndrome Using Gray Level Co-Occurence Matrix, Journal of Physics: Conference Series, vol. 1201, no. 1, 2019, doi: 10.1088/1742-6596/1201/1/012049.
Z. E. Fitri, R. Rizkiyah, A. Madjid, and A. M. N. Im-ron, Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat, Jurnal Rekayasa El-ektrika, vol. 16, no. 1, pp. 44 49, 2020, doi: 10.17529/jre.v16i1.15535.
Z. E. Fitri, U. Nuhanatika, A. Madjid, and A. M. N. Imron, Penentuan Tingkat Kematangan Cabe Rawit (Capsicum frutescens L.) Berdasarkan Gray Level Co-Occurrence Matrix, Jurnal Teknologi In-formasi dan Terapan, vol. 7, no. 1, pp. 1 5, 2020, doi: 10.25047/jtit.v7i1.121.
Z. E. Fitri et al., Penerapan Fitur Warna dan Tekstur untuk Identifikasi Kerusakan Mutu Biji Kopi Arabika (Coffea Arabica) di Kabupaten Bondowoso, Jurnal Ilmiah Teknologi Informasi Asia, vol. 15, no. 2, 2021.
M. Sipan, R. Kartika Pramuyanti, and J. Teknik Elektro Fakultas Teknik, ANALISA CITRA BERBASIS FITUR WARNA TEKSTUR DAN HISTOGRAM UNTUK MENENTUKAN KEMIRIPAN CITRA, Elektrika, vol. 11, no. 1, pp. 15 20, 2019.
Z. E. Fitri, A. Baskara, M. Silvia, A. Madjid, and A. M. N. Imron, Application of backpropagation method for quality sorting classification system on white dragon fruit ( Hylocereus undatus ), IOP Conf. Series: Earth and Environmental Science, vol. 672, no. IT Agriculture, pp. 1 6, 2021, doi: 10.1088/1755-1315/672/1/012085.
Z. E. Fitri, W. B. Nugroho, A. Madjid, and A. M. N. Imron, Comparison of Neural Network Methods for Classification of Banana Varieties (Musa para-diasaca), Jurnal Rekayasa Elektrika, vol. 17, no. 2, 2021, doi: 10.17529/jre.v17i2.20806.
Z. E. Fitri, I. K. E. Purnama, E. Pramunanto, and M. H. Purnomo, A comparison of platelets classifica-tion from digitalization microscopic peripheral blood smear, 2017 International Seminar on Intel-ligent Technology and Its Application: Strengthen-ing the Link Between University Research and In-dustry to Support ASEAN Energy Sector, ISITIA 2017 - Proceeding, vol. 2017-Janua, pp. 356 361, 2017, doi: 10.1109/ISITIA.2017.8124109.
Z. E. Fitri, L. N. Y. Syahputri, and A. M. N. Imron, Classification of White Blood Cell Abnormalities for Early Detection of Myeloproliferative Neo-plasms Syndrome Based on K-Nearest Neighborr, Scientific Journal of Informatics, vol. 7, no. 1, pp. 136 142, 2020, doi: 10.15294/sji.v7i1.24372.
Z. E. Fitri, L. N. Sahenda, P. S. D. Puspitasari, P. Destarianto, D. L. Rukmi, and A. M. N. Imron, The Classification of Acute Respiratory Infection ( ARI ) Bacteria Based on K-Nearest Neighbor, Lontar Komputer : Jurnal Ilmiah Teknologi Informasi, vol. 12, no. 2, pp. 91 101, 2021.
DOI: http://dx.doi.org/10.26623/elektrika.v14i1.4329
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.