Sistem Kendali Hybrid Fuzzy-Pid pada Kinematika Robot Berkaki 4 Menggunakan Sensor Gyroscope

La Ode Muhamad Idris, Andi Kurniawan Nugroho, Daniyah Daniyah

Abstract


Legged robots have attracted the attention of researchers because of their superior adaptation to complex environments compared to wheeled robots. Legged robots are divided into 2 (two) legged Humanoid robots, 4 (four) legged robots, 6 (six) legged robots, and other robots with more legs. Legged robots are robots that can be more adaptable to the terrain compared to wheeled robots in the case of their use in land exploration activities. Although functionally legged robots are more superior, legged robots have their own problems, namely motion control which is more complicated than wheeled robots, therefore the right method is needed to be implemented on the robot.. In this research discusses a 4 (four) legged robot designed in order to move using the inverse kinematic equation on the legs and the body of the robot which is integrated with the MPU6050 gyroscope sensor based on the Hybrid Fuzzy-PID control system. The purpose of this research is to develop a Fuzzy-PID control system that stabilizes the setpoint position in the 4 (four) legged Robot movement system. Fuzzy PID is a combination of PID control and fuzzy logic, where PID control is used to stabilize the system and fuzzy logic is used to improve the system performance. In this research, the Fuzzy-PID control system is developed using the Mamdani (Min-Max) method. The system is later tested by observing the robot's movement response to changes in the gyroscope sensor values. The results obtained were able to get an average output error up to 0.173333% during the response test to the pitch axis of -15°, but in several tests also get the response results that have a considerable error rate is up to 27.31% during the response test to the roll axis of -5°. From the test results of hybrid Fuzzy-PID control, it is obtained that the robot is able to make movements or responses to its stable point by giving reference to the x (roll), y (pitch) and z (yaw) axes where it can be analyzed that the response to the x (roll) and y (pitch) axes will affect the angle of the tibia and femur servo joints, while the response to the z (yaw) axis will affect the angle of the coxa joint servo.

 

Keywords: IMUs (Inertial Measurement Units), Gyroscope, Inverse Kinematics, Hybrid Fuzzy-PID.

 

ABSTRAK

Robot berkaki telah menarik perhatian para peneliti karena adaptasinya unggul terhadap lingkungan yang kompleks dibanding robot beroda. Robot berkaki dibagi menjadi robot Humanoid berkaki 2(dua), robot berkaki 4(empat), robot berkaki 6(enam), dan lainnya yang berkaki lebih banyak.Robot berkaki adalah robot yang lebih adaptif terhadap medan tempuh dibandingka robot beroda dalam kasus penggunaannya pada kegiatan eksplorasi daratan. Walaupun secara fungsional robot berkaki lebih unggul, robot berkaki memiliki permasalahan sendiri, yaitu kontrol gerak yang lebih kompleks dibanding robot beroda, maka dari itu dibutuhkan metode yang tepat untuk diterapkan pada robot. Pada penelitian ini membahas tentang robot berkaki 4(empat) yang dirancang untuk dapat bergerak dengan menggunakan persamaan inverse kinematic pada kaki maupun badan robot yang diintegrasikan dengan sensor gyroscope MPU6050 berbasis sistem kendali Hybrid Fuzzy-PID.Tujuan dari penelitian ini adalah mengembangkan sistem kontrol Fuzzy-PID untuk menstabilkan posisi setpoint pada sistem pergerakan Robot berkaki 4(empat). Fuzzy PID adalah gabungan dari kontrol PID dan logika fuzzy, dimana kontrol PID digunakan untuk menstabilkan sistem dan logika fuzzy digunakan untuk memperbaiki performa sistem. Pada penelitian ini sistem kontrol Fuzzy-PID dikembangkan dengan menggunakan metode Mamdani (Min-Max). Sistem ini kemudian diuji dengan mengamati respon pergerakan robot terhadap perubahan nilai sensor gyroscope. Dimana diperoleh hasil mampu memperoleh rata-rata kesalahan hasil keluarannya sampai dengan 0.173333% pada saat pengujian respon terhadap sumbu pitch -15°, namun dibeberapa pengujian juga mendapa tkan hasil respon yang memiliki tingkat kesalahan yang cukup besar sampai dengan 27.31% pada saat pengujian respon terhadap sumbu roll -5°. Dari hasil pengujian kendali hybrid Fuzzy-PID diperoleh hasil robot mampu melakukan pergerakan atau respon untuk menuju titik stabilnya dengan pemberian acuan terhadap sumbu x(roll), y(pitch) dan z(yaw) dimana dapat dianalisa bahwa respon terhadap sumbu x(roll) dan y(pitch) akan mempengaruhi sudut servo sendi tibia dan femur, sedangkan respon terhadap sumbu z(yaw) akan mempengaruhi sudut servo sendi coxa.


Keywords


IMUs (Inertial Measurement Units), Gyroscope, Inverse Kinematics, Hybrid Fuzzy-PID

Full Text:

PDF

References


H. Deng, G. Xin, G. Zhong, and M. Mistry, Gait and trajectory rolling planning and control of hexapod robots for disaster rescue applications, Rob. Auton. Syst., vol. 95, pp. 13 24, 2017, doi: 10.1016/j.robot.2017.05.007.

A. Hidayat, Desain dan implementasi metode inverse kinematics dan sine pattern untuk kontrol gerak pada autonomous quadruped robot design and implementation inverse kinematics and sine pattern methods for locomotion control on, E-Proceeding Eng., vol. 3, no. 2, pp. 2116 2123, 2016.

R. C. Prayogo and A. Triwiyatno, Perancangan Robot Berkaki 4 ( Quadruped ) Dengan Stabilization Algorithm Pada Uneven Floor Menggunakan 6-Dof Imu Berbasis Invers Kinematic, Transient, vol. 7, no. 2, pp. 543 551, 2018.

K. J. …str ¶m and T. H ¤gglund, Advanced PID Control, IEEE Control Syst., vol. 26, no. 1, pp. 30 31, 2006, doi: 10.1109/MCS.2006.1580151.

J. Shearer and T. Consultant, Nonlinear Control and Decision Making, Progr. Manag., 2007.

O. Bottema and B. Toth, Theoretical Kinematics. Dover Publications; Inc., New York, 1979.

S. Kucuk and Z. Bingul, Industrial robotics: Theory, Modelling and Control - Robot Kinematics: Forward and Inverse Kinematics, no. December. 2006.

P. A. Kumar and Y. S. Narayan, Design of a quadruped robot and its inverse kinematics, Int. J. Mech. Prod. Eng. Res. Dev., vol. 7, no. 4, pp. 241 252, 2017, doi: 10.24247/ijmperdaug201725.

A. I. Nasrudin, K. Anam, and M. A. Prawira N, Evaluasi Inverse Kinematics untuk Robot Quadruped Menggunakan Sensor Accelerometer, J. Rekayasa Elektr., vol. 15, no. 3, 2020, doi: 10.17529/jre.v15i3.14079.

Sudradjat, Dasar-dasar fuzzy logic (Modul Kuliah), Fak. Mat. dan Ilmu Pengetah. Alam Univ. Padjajaran Bandung, vol. 1, no. 1, 2008, doi: 10.14710/medstat.1.1.43-51.

V. Nov ¡k, I. Perfilieva, and J. MoÄkoÅ™, Mathematical Principles of Fuzzy Logic, no. December 2014. 1999. doi: 10.1007/978-1-4615-5217-8.

H. Nasution, Implementasi Logika Fuzzy pada Sistem Kecerdasan Buatan, ELKHA J. Tek. Elektro, vol. 4, no. 2, pp. 4 8, 2012, [Online]. Available: https://jurnal.untan.ac.id/index.php/Elkha/article/view/512

Sri Kusumadewi, Atificial Intelligence, Artif. Intell. (Teknik dan Apl., 2003.

Marialena Vagia, Pid Controller Design Approaches Theory , Tuning And Application. Rijeka: InTech, 2012. [Online]. Available: www.intechopen.com

P. J. Escamilla-Ambrosio and N. Mort, Auto-tuning of fuzzy PID controllers, IFAC Proc. Vol., vol. 35, no. 1, pp. 169 174, 2002, doi: 10.3182/20020721-6-es-1901.00681.

A. Visioli, Practical PID Control, no. 9781846285851. 2006. doi: 10.1007/1-84628-586-0_3.

S. Masmachofari, Sistem Kendali Hybrid PID-Logika Fuzzy Pada Pengaturan Kecepatan Motor DC, Makara, Teknol., vol. Vol. 8, no. 1, pp. 25 34, 2004.

M. Santos, S. Dormido, and J. M. D. La Cruz, M. Santos", Fuzzy-PID Control. vs. Fuzzy-PI Control., no. 34, pp. 1598 1604, 1996.

J. Zhang, L. Guo, S. Wei, Y. Song, and Y. Zhang, Study of Kalman filtering algorithm and fuzzy PID controller for the Coriolis acceleration tester, Chinese Control Conf. CCC, vol. 2016-Augus, pp. 3782 3786, 2016, doi: 10.1109/ChiCC.2016.7553943.

M. H. Chiang, L. W. Lee, and H. H. Liu, Adaptive fuzzy controller with self-tuning fuzzy sliding-mode compensation for position control of an electro-hydraulic displacement-controlled system, J. Intell. Fuzzy Syst., vol. 26, no. 2, pp. 815 830, 2014, doi: 10.3233/IFS-130773.

F. G. Becker et al., The Gyroscope - Theory and Applications, vol. 7, no. 1. 1958.

C. C. M. N. Armenise, Advances in Gyroscope Technology. 2010.

NvenSense, MPU-6000 and MPU-6050 Product Specification Revision 3.4, vol. 33, no. 1. 2013. doi: 10.1093/fs/XXXIII.1.1.

Yulmaini, PENGGUNAAN METODE FUZZY INFERENCE SYSTEM (FIS) MAMDANI DALAM PEMILIHAN PEMINATAN MAHASISWA UNTUK TUGAS AKHIR, J. Inform. Darmajaya, vol. 15, no. 1, pp. 10 23, 2015.




DOI: http://dx.doi.org/10.26623/elektrika.v15i1.3242

Refbacks

  • There are currently no refbacks.


Office: Electrical Engineering Lecturer Room, 7th Floor of Menara USM Building, Universitas Semarang, Jalan Soekarno - Hatta, Tlogosari, Semarang - Central Java Tel:(024) 6702757 Fax: (024) 6702272, Email: elektrika@usm.ac.id

View My Stats

Creative Commons License
This work is licensed under a  Creative Commons Attribution 4.0 International License.