Optimasi Kualitas Jaringan WLAN Berdasarkan Coverage Area dan Jumlah Pengguna di Fakultas Teknologi Industri UNISSULA
DOI:
https://doi.org/10.26623/elektrika.v13i1.2989Keywords:
WLAN, Access Point, Signal Strength, SNRAbstract
WLAN is a wireless telecommunications network in the process of distributing data or information. This network is easier and economical to build because without having to do the design of cable lines and no need for cables as devices. In the main building of the Faculty of Industrial Technology UNISSULA already has a WLAN network, but there are blankspots in several areas. The layout and number of Access Points (AP) greatly affect the quality of the WLAN signal, besides the number of users. Optimization is done by comparing the number of AP exiting with the number of APs based on the coverage area and number of users. The parameters used for network quality are signal strength more than -75 dBm and Signal to Noise Ratio (SNR) of more than 25 dB. Retrieval of existing network quality data with walktest method using the Ekahau Site Survey software. The quality of signal strength and SNR based on the coverage area is calculated using the COST 231 Multiwall method, while those based on the number of users are calculated using the ratio of Airtime per Device (APD) to Number of Device (NoD). The next step, simulating the AP layout using the Ekahau Site Survey software. The research concluded that each floor only requires 2 pieces AP. The percentage value of signal strength> -75 dBm after optimization is 86%, 89.8%, and 87.4% for floors 1, 2, and 3 respectively. While the SNR percentage values> 25 dB after optimization are 81.1%, 86.3%, and 84.5% for floors 1, 2, and 3 respectively.
Downloads
References
Wi-Fi (wireless networking), www.webopedia.com, 2018. [Online]. Available: https://www.webopedia.com/TERM/W/Wi_Fi.html. [Accessed: 06-Jul-2018].
T.-C. W. Shoa-Yei Yeong, Wafaa Al-Salihy, Indoor WLAN Monitoring and Planning using Empirical and Theorical Propagation Models, IEEE, pp. 165 169, 2010.
R. P. F. H. Cassio Bento Andrade, IEEE 802.11 WLANS: A Comparison on Indoor Coverage Models, IEEE, 2010.
H. N. Bekti Widyaningsih, Optimalisasi Area Cakupan Area Jaringan Nirkabel dalam Ruangan. Malang: Universitas Brawijaya, 2013.
Ekahau Site Survey, www.ekahau.com, 2018. [Online]. Available: https://www.ekahau.com/. [Accessed: 01-Sep-2018].
R. N. Zawiyah Saharuna, Desain Jaringan WLAN Berdasarkan Cakupan Area dan Kapasitas, Infotel, vol. 8, 2016.
G. Victonida, Perancangan dan Simulasi Penempatan Access Point Wireless Berdasarkan Coverage Jaringan di Gedung Twin Tower Universitas Muhammadiyah Yogyakarta. Yogyakarta: Universitas Muhammadiyah Yogyakarta, 2017.
U. K. U. Silmina Farhani Komalin, Analisa Perancangan Indoor WiFi IEEE 802.11n pada Gedung Tokong Nanas (Telkom University Lecture Center), Semin. Nas. Inov. dan Apl. Teknol. di Ind. 2016, pp. 356 361, 2016.
T. Zani, Perancangan High Density Wireless LAN 802.11n 2.4 GHz di Ruang Kelas Fakultas Ilmu Terapan Universitas Telkom, Teknol. Inf, pp. 103 107, 2017.
M. U. Nuha, Analisa Probabilitas Co-Channel pada Jaringan Wireless Menggunakan Nodemcu Esp8266 untuk Sistem Cognitive Radio. Semarang: Universitas Islam Sultan Agung, 2017.
Downloads
Published
Issue
Section
License
Authors who publish this journal agree to the following terms:
The author owns the copyright and grants the journal the first publication rights with the work simultaneously licensed under the Creative Commons Attribution 4.0 International License which allows others to share the work with recognition of the authorship of the work and initial publication in the journal.
Authors may enter into separate additional contractual agreements for non-exclusive distribution of the published journal version of the work (e.g., posting it to an institutional repository or publishing it in a book), in recognition of its initial publication in this journal.
Authors are allowed and encouraged to post their work online (e.g., in institutional repositories or on their websites) before and during the submission process, as it can lead to productive exchanges, as well as earlier and larger citations of published works (See The Effects of Open Access).
This work is licensed under the Creative Commons Attribution 4.0 International License.