Pengenalan Pola Lintasan Berbasis Neural Network Pada Prototype Self-Driving Car
Abstract
Self driving cars are an interesting topic to discuss due to the high level of traffic accidents that occur due to human error. Self driving cars are vehicles that can find out about the environment with minimal human intervention. Self driving itself has many development methods such as Light Detection and Ranging (LIDAR), cameras, radars, or a combination of these sensors. This study made a prototype self-driving car using a camera as a sensor and a neural network algorithm for pattern recognition. The pattern recognition in question is the image recognition of the path taken. The data that has been taken will later be converted into a matrix with dimensions of 320x120 according to the image resolution. Then the data will be trained to recognize the path pattern with the proportion of 7: 3 for training accuracy and validation accuracy. The resulting prediction has an accuracy of 76.86% for training accuracy and 75.24% for validation accuracy.
Keywords
Full Text:
PDFReferences
K. K. dan Informatika, Setiap Jam Rata-Rata 3 Orang Meninggal Akibat Kejelakaan Jalan Di Indo-nesia, 2017. https://kominfo.go.id/index.php/content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jam-akibat-kecelakaan-jalan/0/artikel_gpr.
Sumardi, M. Taufiqurrahman, and M. A. Riyadi, Street mark detection using raspberry pi for self-driving system, Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 2, pp. 629 634, 2018, doi: 10.12928/TELKOMNIKA.v16i2.4509.
S. K. Kokate, Review on Autonomous Car using Raspberry Pi, Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, pp. 3090 3094, 2018, doi: 10.22214/ijraset.2018.1427.
G. SinghPannu, M. Dawud Ansari, and P. Gupta, Design and Implementation of Autonomous Car using Raspberry Pi, Int. J. Comput. Appl., vol. 113, no. 9, pp. 22 29, 2015, doi: 10.5120/19854-1789.
K. McFall, Using visual lane detection to control steering in a self-driving vehicle, Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 166, pp. 861 873, 2016, doi: 10.1007/978-3-319-33681-7_77.
K. K. dan Informatika, Setiap Jam Rata-Rata 3 Orang Meninggal Akibat Kejelakaan Jalan Di In-donesia, 2017. https://kominfo.go.id/index.php/content/detail/10368/rata-rata-tiga-orang-meninggal-setiap-jam-akibat-kecelakaan-jalan/0/artikel_gpr.
Sumardi, M. Taufiqurrahman, and M. A. Riyadi, Street mark detection using raspberry pi for self-driving system, Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 2, pp. 629 634, 2018, doi: 10.12928/TELKOMNIKA.v16i2.4509.
S. K. Kokate, Review on Autonomous Car using Raspberry Pi, Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, pp. 3090 3094, 2018, doi: 10.22214/ijraset.2018.1427.
G. SinghPannu, M. Dawud Ansari, and P. Gupta, Design and Implementation of Autonomous Car using Raspberry Pi, Int. J. Comput. Appl., vol. 113, no. 9, pp. 22 29, 2015, doi: 10.5120/19854-1789.
K. McFall, Using visual lane detection to control steering in a self-driving vehicle, Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST, vol. 166, pp. 861 873, 2016, doi: 10.1007/978-3-319-33681-7_77.
S. Jana, S. Borkar, and M. E. Student, Autonomous Object Detection and Tracking using Raspberry Pi, Int. J. Eng. Sci. Comput., vol. 7, no. 7, pp. 14151 14155, 2017, [Online]. Available: http://ijesc.org/.
W. Farag and Z. Saleh, Traffic signs identification by deep learning for autonomous driving, IET Conf. Publ., vol. 2018, no. CP747, pp. 22 23, 2018, doi: 10.1049/cp.2018.1382.
M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, DeepPicar: A low-cost deep neural network-based autonomous car, Proc. - 2018 IEEE 24th Int. Conf. Embed. Real-Time Comput. Syst. Appl. RTCSA 2018, pp. 11 21, 2019, doi: 10.1109/RTCSA.2018.00011.
Global Ground Vehicle Standards, Automated Driving: Levels Of Driving Automation Are Defined In New SAE International Standard J3016, SAE In-ternational, 2016. https://www.sae.org/misc/pdfs/automated_driving.pdf.
A. Driving and S. Dimensions, Autonomes Fahren, Auton. Fahr., 2015, doi: 10.1007/978-3-662-45854-9.
DOI: http://dx.doi.org/10.26623/elektrika.v12i2.2732
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.