Klasifikasi Citra Batik Menggunakan Co-Occurrence Matrices Berbasis Wavelet Filter

BADROE ZAMAN, Khoirudin Khoirudin

Abstract


Batik is the result of cultural arts that contains a philosophical meaning in each of its motifs. Various types of batik motifs create complexity in the recognition of batik image patterns. Classification of images into certain classes is also a problem in the field of pattern recognition. Machine learning is a method that is very developed at this time. Machine learning method is used to identify batik motifs through batik image classification. This study focuses on the image dataset of written batik which has two motifs, namely classical motifs and contemporary motifs. This study shows the experimental results of batik image classification using the Backpropagation Neural Network, Support Vector Machine and k-Nearest Neighbor classification methods. Co-occurrence matrices as wavelet filter-based feature extraction are used for input into batik image classification. The experimental results show that k-NN gets the best accuracy value of 95.56% while BPNN gets an accuracy value of 85.40% and SVM gets an accuracy value of 76.51%. Based on these results, it can be concluded that k-NN is the best method for classifying batik images with co-occurrence matrices as wavelet filter-based feature extraction.

Keywords


Batik Classification; Backpropagation Neural Network; K-Nearest Neighbor; Support Vector Machine; Co-occurrence matrices

Full Text:

PDF

References


UNESCO, Indonesia Batik, 2009. http://www.unesco.org/culture/ich/en/RL/indonesian-batik-00170 (accessed Sep. 21, 2021).

Y. Sari, Klasifikasi Pengenalan Motif Batik Berbasis Image Retrival, Jukung (Jurnal Tek. Lingkungan), vol. 4, no. 2, pp. 27 33, 2018, doi: 10.20527/jukung.v4i2.6581.

N. Luh and W. Sri, Deteksi Batik Parang Menggunakan Fitur Co-Occurrence Matrix Dan Geometric Moment Invariant Dengan Klasifikasi KNN, LONTAR Komput. VOL. 7, NO.1, April 2016, vol. 7, no. 1, pp. 715 725, 2016.

K. A. N. Ignatia Dhian E.K.R, Klasifikasi Batik Menggunakan KNN Berbasis Wavelet, Semin. Nas. Teknol. Inf. dan Komun. 2016 (SENTIKA 2016), vol. Yogyakarta, no. ISSN : 2089-9815, pp. 615 623, 2016.

T. Y. Prahudaya and A. Harjoko, Metode Klasifikasi Mutu Jambu Biji Menggunakan Knn Berdasarkan Fitur Warna Dan Tekstur, J. Teknosains, vol. 6, no. 2, p. 113, 2017, doi: 10.22146/teknosains.26972.

A. E. Minarno, A. S. Maulani, A. Kurniawardhani, F. Bimantoro, and N. Suciati, Comparison of methods for Batik classification using multi texton histogram, Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 3, pp. 1358 1366, 2018, doi: 10.12928/TELKOMNIKA.v16i3.7376.

A. F. Achmalia, Walid, and Sugiman, Peramalan Penjualan Semen Menggunakan Backpropagation, UNNES J. Math., vol. 8, no. 1, pp. 92 106, 2019.

B. Zaman and M. B. Hanif, EKSTRAKSI FITUR BERBASIS WAVELET FILTER UNTUK MENINGKATKAN KINERJA NEURAL NETWORK PADA CITRA BATIK TULIS, E-PROSIDING Semin. Nas. Has. Penelit. Lemb. Penelit. DAN Pengabdi. Kpd. Masy. Univ. SEMARANG, pp. 374 380, 2021.

I. Nurhaida, H. Wei, R. A. M. Zen, R. Manurung, and A. M. Arymurthy, Texture fusion for batik motif retrieval system, Int. J. Electr. Comput. Eng., vol. 6, no. 6, pp. 3174 3187, 2016, doi: 10.11591/ijece.v6i6.12049.

Y. Brasilka and D. Andreswari, Klasifikasi Citra Batik Besurek Menggunakan Jaringan Syaraf Tiruan Self Organizing Map ( Som ), vol. 3, no. 2, pp. 132 145, 2015.

A. E. Minarno, Y. Munarko, A. Kurniawardhani, F. Bimantoro, and N. Suciati, Texture Feature Extraction Using Co-Occurrence Matrices of Sub-Band Image For Batik Image Classification, 2nd Int. Conf. Inf. Commun. Technol. Texture, pp. 249 254, 2014.

Rangkuti, Content Based Batik Image Classification using Wavelet Transform and Fuzzy Neural Network, J. Comput. Sci., vol. 10, no. 4, pp. 604 613, Apr. 2014, doi: 10.3844/jcssp.2014.604.613.

A. Kadir and A. Susanto, Pengolahan Citra. Yogyakarta, 2012.

A. Kurniawardhani, A. E. Minarno, and F. Bimantoro, Efficient texture image retrieval of improved completed robust local binary pattern, 2016 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2016, pp. 492 497, 2017, doi: 10.1109/ICACSIS.2016.7872781.




DOI: http://dx.doi.org/10.26623/jprt.v17i2.4594

Refbacks

  • There are currently no refbacks.


View My Stats

Penerbit

 

Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Semarang

Alamat Redaksi:

Jl.Soekarno-Hatta, Tlogosari, Semarang, Jawa Teangah, Indonesia 50196 Telp: 024-6702757 psw: 8302 Fax: 024-6702272 e-mail: jprt@usm.ac.id

Creative Commons License
This work is licensed under a  Creative Commons Attribution 4.0 International License.