PREDIKSI GETARAN YANG DIAKIBATKAN OLEH KERETA API MELINTAS

Agus Margiantono

Jurusan Teknik Elektro Fakultas Teknik Universitas Semarang

ABSTRACT

Tapak proyek pembangunan Jalan KA Jalur Ganda Cirebon-Kroya terletak di dua propinsi yaitu Propinsi Jawa Barat dan Jawa Tengah. Dengan adanya jalur Ganda dipastikan akan terjadi peningkatan getaran disepanjang jalur tersebut. Berdasarkan Kep-49/MENLH/11/1996, dampak getaran ada 2 yaitu : dampak getaran untuk kenyamanan dan kesehatan serta dampak getaran mekanik untuk struktur dan bangunan. Disemua titik sampel studi didapatkan semua getaran masih dibawah baku tingkat getaran Berdasarkan Kep-49/MENLH/11/1996. Getaran terbesar akibat operasinal Kereta api terdapat disetasiun Kejaksan Cirebon. Perlu di cermat jika 2 kereta melintas Getaran telah melampaui baku tingkat getaran Berdasarkan Kep-49/MENLH/11/1996.

Kata Kunci ; Jalan KA, Jalur Ganda, Kep-49/MENLH/11/1996, setasiun Kejaksan

1. Pendahuluan

Tapak proyek pembangunan Jalan KA Jalur Ganda Cirebon-Kroya terletak di dua propinsi yaitu Propinsi Jawa Barat dan Jawa Tengah pada daerah Kota/Kabupaten yaitu dimulai dari Stasiun Cirebon pada Km 219+168 di Kota Cirebon, Kabupaten Cirebon, Kabupaten Brebes, Kabupaten Tegal, Kabupaten Banyumas sampai Km 377+122 di Stasiun Kroya yang ada di Kabupaten Cilacap. Rencana pembangunan jalur ganda rel kereta api lintas Cirebon-Kroya sepanjang 158 km meliputi kegiatan teknis antara lain adalah:

- Pembangunan Alas Jalan Rei (Roadbed) & Jalur Rei (Track)
- Pembangunan Terowongan (Tunel) sebanyak 2 buah
- Peningkatan 2 buah stasiun
- Pembangunan Jembatan
- Pekerjaan Saluran dan Drainase
- Relokasi Jalan
- Pembangunan Fly over & under pass
- Pemasangan Sistem Signal dan Telekomunikasi

Gambar.1. Salah Satu Titik Sampel Lokasi Pengukuran

2. Metode Pengukuran

Berdasarkan Kep-49/MENLH/11/1996, dampak getaran ada 2 yaitu : dampak getaran untuk kenyamanan dan kesehatan serta dampak getaran mekanik untuk struktur dan bangunan. Dampak getaran kesehatan dan kenyamanan diukur simpang getaran (satuan mikron) pada frekuensi 4 Hz, 5 Hz, 6.3 Hz, 8Hz, 10 Hz, 12.5 Hz, 16 Hz, 20 Hz, 25 Hz, 31.5 Hz, 40 Hz, 50 Hz dan 63 Hz yang kemudian dipaparkan pada grafik dan dianalisis untuk mendapatkan kriteria dampak. Untuk

dampak getaran mekanik yang diukur adalah kecepatan getaran (satuan mm/det) pada frekuensi 4 Hz, 5 Hz, 6.3 Hz, 8Hz, 10 Hz, 12.5 Hz, 16 Hz, 20 Hz, 25 Hz, 31.5 Hz, 40 Hz dan 50 Hz yang kemudian dipaparkan pada grafik dan dianalisis untuk mendapatkan kategori dampak.

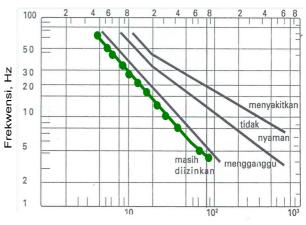
Berdasarkan hasil pengukuran, diperoleh hasil sebagai berikut :

 a. Dampak Getaran untuk Kenyamanan dan Kesehatan
 Dari hasil pengukuran simpangan getaran untuk masing-masing lokasi

(Tabel 3.12. s/d 3.27) yang kemudian digambarkan pada grafik (Gambar 3.5. s/d. 3.35.), dapat diketahui semuanya masih berada pada kriteria *tidak mengganggu*.

b. Dampak Getaran terhadap struktur bangunan

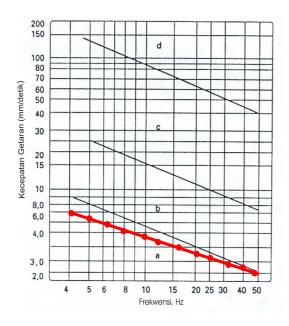
Hasil pengukuran kecepatan getaran untuk tiap-tiap lokasi (Tabel 3.12.s/d 3.27) kemudian digambarkan pada grafik (Gambar 3.6. s/d 3.36.), dapat diketahui bahwa dampak getarannya termasuk dalam *kategori A (tidak menimbulkan kerusakan)*.


Dari uraian diatas, dapat disimpulkan bahwa kondisi di daerah sepanjang rencana proyek lintasan ganda Cirebon-Kroya *masih berada dibawah baku mutu*.

3. Hasil Pengukuran dan Pembahasan

Dari pengukuran yang telah dilakukan didapatkan besar getaran untuk kesehatan dan kerusakan bangunan seperti pada tabel dibawah

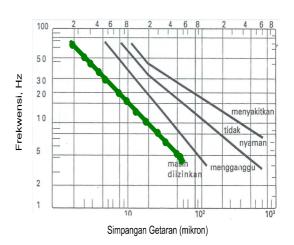
Tabel.1. Hasil Pengukuran Getaran di Stasiun Cirebon.


No	Frekuensi	Simpangan	Kecepatan
	(Hz)	Ge	Ge
		tar	tar
		an	an
		(mikron)	(mm/det)
1	4	90.44	6,02
2	5	72.26	5,40
3	6.3	56.15	4,84
4	8	39.85	4,14
5	10	32.34	3,92
6	12.5	24.44	3,71
7	16	20.26	3,50
8	20	16.65	3,30
9	25	12.17	3,18
10	31.5	10.58	2,84
11	40	7.54	2,46
12	50	5.85	2,04
13	63	4.69	

Simpangan Getaran (mikron)

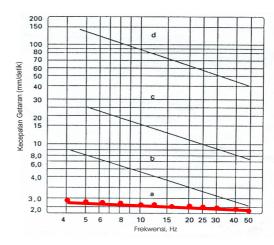
Gambar2. Grafik tingkat getaran untuk kenyamanan dan kesehatan di Stasiun Cirebon (warna hijau)

Keterangan: grafik masih berada di areal *masih*diizinkan, artinya termasuk kriteria
tidak mengganggu.


Gambar 3. Grafik Tingkat Getaran Mekanik di Stasiun Cirebon (warna merah)

Keterangan: Grafik yang dihasilkan berada pada areal a, yaitu termasuk kategori A artinya tidak menimbulkan

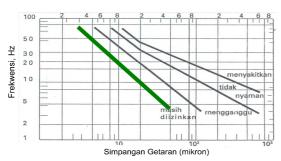
kerusakan.


Tabel.2. Hasil Pengukuran Getaran di MA Syarif Hidayattullah Cirebon

No	Frekuensi	Simpangan	Kecepatan
	(Hz)	Ge	Ge
		tar	tar
		an	an
		(mikron)	(mm/det)
1	4	61,24	2,82
2	5	50.06	2,56
3	6.3	38.18	2,33
4	8	25,02	2,21
5	10	15,21	2,12
6	12.5	12,06	2,02
7	16	10.41	2,01
8	20	7,12	2,00
9	25	5,06	1,94
10	31.5	4,88	1,74
11	40	3,94	1,54
12	50	2,80	1,28
13	63	1,97	

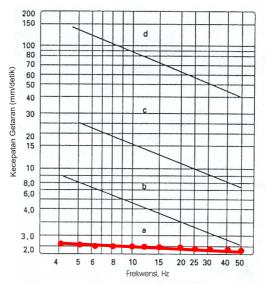
Gambar 4. Grafik tingkat getaran untuk kenyamanan dan kesehatan di *MA Syarif Hidayattullah* (warna hijau)

Keterangan : grafik masih berada di areal *masih diizinkan*, artinya termasuk *kriteria tidak mengganggu*



Gambar 5. Grafik Tingkat Getaran Mekanik di MA Syarif Hidayattullah Cirebon (warna merah)

Keterangan : Grafik yang dihasilkan berada pada areal A, yaitu termasuk *kategori A*, artinya *tidak menimbulkan kerusakan*


Tabel.3. Hasil Pengukuran di Pemukiman Penduduk Pulosaren

No	Frekuensi	Simpangan	Kecepatan
	(Hz)	Ge	Ge
		tar	tar
		an	an
		(mikron)	(mm/det)
1	4	52,50	2,24
2	5	48,69	2,18
3	6.3	41,05	2,02
4	8	35,81	2,00
5	10	20,57	2,00
6	12.5	18,95	1,98
7	16	9,51	1,95
8	20	7,93	1,82
9	25	7,04	1,74
10	31.5	6,12	1,56
11	40	5,85	1,44
12	50	4,53	1,24
13	63	3,11	

Gambar.6.Grafik tingkat getaran untuk kenyamanan dan kesehatan di Pemukiman Penduduk Pulosaren Pekalipan (warna hijau)

Keterangan: grafik masih berada di areal *masih*diizinkan, artinya termasuk kriteria
tidak mengganggu

Gambar.7.Grafik Tingkat Getaran Mekanik di Permukiman Penduduk Pulosaren Pekalipan (warna merah)

Keterangan : Grafik yang dihasilkan berada pada areal a, yaitu termasuk *kategori A* artinya *tidak menimbulkan kerusakan*.

4.Simpulan

- Disemua titik sampel studi didapatkan semua getaran masih dibawah baku tingkat getaran Berdasarkan Kep-49/MENLH/11/1996.
- Getaran terbesar akibat operasinal Kereta api terdapat disetasiun Kejaksan Cirebon.
- Perlu di cermat jika 2 kereta melintas Getaran telah melampaui baku tingkat getaran Berdasarkan Kep-49/MENLH/11/1996.

DAFTAR PUSTAKA

Danusaputro H, dkk, 1997, "Pengukuran frekuensi diri dan dampak langsung dari suara speaker pada besaran dinamis Candi Borobudur", Laporan Penelitian

- Danusaputro, H, 2000," Dampak Pada Bising dan Getaran", Makalah Diklat Propinsi Jawa Tengah.
- David Halliday, 1985, "Physics", 3nd
- edition, John Wiley Sons F.E. Richard, Jr, 1994, "Vibrations of soils and fondations", Prentice Hall, Inc, Englewood Cliffs, New Jersey.
- Badan Pengendalian Dampak Lingkungan, 1996. Himpunan Peraturan di Bidang Pengendalian Dampak Lingkungan,
- Sutimin, 1999, "Masalah Vibrasi pada Struktur Elastis", makalah seminar
- Sutrisno, 1984, "Fisika Dasar", Penerbit ITB.
- Team, 1999, ANDAL Pembangunan Jalur Ganda KA Lintas Cirebon-Kroya, PT Insan Mandiri, Jakarta